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Abstract
The urban water supply system is crucial for city
life, yet it remains vulnerable to a range of dis-
ruptions, particularly in densely populated areas.
The motivation for this work is to design decision-
support algorithms for early prediction of water
main breaks and to prevent the potential damage to
life and property. We present a comprehensive ap-
proach that uses statistical learning techniques and
Bayesian networks involving three key steps: un-
supervised learning of a Bayesian network struc-
ture to handle uncertainty in data and action out-
comes, water main break risk prediction using ma-
chine learning, and survival analysis to estimate the
probability of a pipe’s longevity. Utilizing a pub-
licly available dataset, we provide an initial evalu-
ation of our approach showing that it outperforms
a state-of-the-art model while providing a holistic
understanding of pipe breakage dynamics for in-
frastructure maintenance.

1 Introduction
The urban water system is vital for city life but susceptible
to disruptions, like the water main breakage above a Man-
hattan subway station in August 2023 that affected the com-
mute of 300,000 passengers and led to costly cleanup ef-
forts [Nolan, 2023]. A month later, Storm Ophelia caused ad-
ditional flooding, further disrupting lives and damaging prop-
erty [Ley, 2023]. NYC transit authorities and the Metropoli-
tan Transportation Authority (MTA) have acknowledged the
challenges posed by an aging infrastructure, which includes
thousands of pipes, some of which date back to the 1890s,
underscoring the pressing need for regular maintenance and
replacement.

Designing decision-support algorithms for modeling, pre-
dicting, and preventing water main breaks and their cascading
consequences across the infrastructure network is the motiva-
tion for this work. Specifically our twin goals are: (a) early
risk prediction of water main breakage which in turn allows
for (b) mitigating actions that prevent the breaks and asso-
ciated damage. We propose the building blocks for an AI-
powered framework for recommending areas needing atten-
tion, such as locations with missing data and potential wa-

ter main break locations in city infrastructure. Our proposed
model will use historical data to predict and manage these
incidents effectively, offering cost-saving strategies for net-
work maintenance. Critical features for water main break
prediction identified in the literature include pipe condition,
age, size, material, and environmental factors like traffic, lo-
cation, soil, groundwater, and climate [Kumar et al., 2018;
Kabir et al., 2016]. The work described in this paper aims
to build a sustainable system that not only relies on the pre-
diction of the risk of a pipe breaking but also investigates
ways to identify and where possible, mitigate the potential
causes for the breakage. In this study, we present U2RPSA,
a pipeline that starts by understanding the dependencies be-
tween the factors involved in water main pipe breakage using
Unsupervised Bayesian Learning under Uncertainty (U2). In
the next step, the probability of a pipe breaking is determined
based on identifying patterns within the data using Risk Pre-
diction (RP ). In the last step, Survival Analysis (SA) aims
to estimate the probability of a pipe surviving after a certain
time in the future. All three steps together enable the deci-
sion support system to prioritize pipe maintenance in order of
urgency (highest risk of breakage) and to take the mitigation
steps early enough to prevent breakage.

2 Related Work
Risk Prediction: The prediction of water pipe breakage re-
lies on critical features such as the history of breaks, pipe
conditions (age, size, material, and water pressure [Kumar
et al., 2018; Demissie et al., 2017; Á. Martı́nez-Codina and
Garrote, 2016], and environmental factors [Kabir et al., 2016]
like traffic patterns and soil conditions. Various classical
machine learning (ML) techniques, have been explored for
this purpose. Bayesian networks [Tang et al., 2019], known
for modeling complex dependencies and uncertainties, em-
ploy directed acyclic graphical (DAG) models, integrating
multiple data sources and expert judgments, offering inter-
pretable graphical structures, and accommodating interven-
tions [Koller and Friedman, 2009]. Prior research has em-
ployed dynamic Bayesian networks [Demissie et al., 2017]
to assess the impact of time-dependent factors on pipe fail-
ures, emphasizing the significance of time in prediction mod-
els. Feature selection, as demonstrated by Omar et al. [Omar
et al., 2023] plays a crucial role in enhancing predictive ac-
curacy, focusing on factors like pipe age, material, condi-



tion score, and criticality. Survival Analysis There is also
prior work in predicting pipe breaks using Survival Analy-
sis. Survivability refers to the estimation of the probabil-
ity of an event occurring after a certain time has elapsed.
Somek [Kimutai et al., 2015] compare various statistical re-
gression models to estimate the survival function. Kabir et
al. [Kabir et al., 2016] uses the Bayesian Model Averaging
framework on Survival Analysis models, by taking into ac-
count the time-dependent covariates. They develop the sur-
vival curves with sequential parameters, that are observed by
dividing the years into discrete periods.

However, these related works only focus on specific tasks
(i.e. Risk Prediction or Survival Analysis) with respect to
pipe breaks. Also, they do not delve into the reasons for
the pipe breaks. Our approach aims to address this knowl-
edge gap by predicting the status and estimating the survival
chances of risk-prone pipes. We also investigate the causes
for pipe breaks as part of our overall goal to pursue mitigation
strategies, thus providing a framework for the holistic under-
standing for prediction and prevention of water main breaks.

3 Approach
Our proposed framework for prediction and prevention of
pipe breaks involves 3 steps. Step 1 is unsupervised learn-
ing of a Bayesian network (BN) structure; Step 2 involves
risk prediction using Machine Learning, and Step 3 deals with
Survival Analysis that is leveraged for estimation of the sur-
vival probability of a pipe. We will now elaborate upon our
methodology in detail.

Step 1: Learning a BN structure captures the statis-
tical correlations and relationships between features in the
data representing the city’s water infrastructure with minimal
training input. This automated approach used minimal expert
guidance in the form of a temporal blacklist. Unlike prior
works [Kumar et al., 2018], where a set of ML techniques re-
quiring all features for final label prediction are applied and
compared to determine the best approach, our approach can
achieve water main predictions just using Markov blanket in
the testing phase. The methodology implicitly reveals the
most significant features in the dataset through its Markov
blanket representation. We employed structure learning al-
gorithms to determine the edges in the Bayesian network, fo-
cusing on score-based methods like the Bayesian Information
Criterion in Equation 1 in our study.

BIC = logP (D|G) + d/2log(N) (1)

Here, D is the data, G is the structure, d is the number of free
parameters in the network, and N is the size of the dataset
on which the learning is being conducted. The learned model
approximates a graphical model, serving as a map of the to-
tal distribution of the process. The pipeline consists of six
steps, including input processing, data transformation, visual-
ization, structure learning, structure averaging, and prediction
and analysis [Mallia, 2023].

Step 2: Risk Prediction To visualize the results of the
above Step 1, we utilize a tool that highlights the probabilistic
relationship modeling offered by Bayesian Networks. While
several programs exist for BN modeling [Uusitalo, 2007] and

causal discovery [Glymour et al., 2019], we use “BN Inspec-
tor”, a bespoke tool [Mallia, 2023] designed by our research
team, that has the following basic functions: (1)generates a
dynamic plot of the BN currently being utilized, which up-
dates to reflect the Markov Blanket of the currently selected
target outcome, as well as what variables are being used in
evidence for examining conditional distributions. (2) facili-
tates analysis of marginal versus conditional probabilities for
a variable: the user enters available evidence in the form of a
logical expression and observes the impact on the distribution
for a variable as discovered via an inference algorithm [Scu-
tari, 2010]. Once the relationships between features are visu-
alized and understood using our BN inspector tool, the next
stage is to utilize the features for modeling the prediction of
a pipe break. We perform data pre-processing and merging
on datasets that could represent a range of databases includ-
ing water main pipe distribution, historical break data, data on
factors that could affect water main breaks such as traffic, soil
type, pressure zones, tree root growth etc. Section 4 describes
the datasets we used for evaluation in more detail. Then, we
incorporate Analysis of Variance significance tests (ANOVA)
to calculate the significance of features for the target out-
come viz., Pipe Break. We do extensive cross-validation
using Optuna [Akiba et al., 2019] for hyperparameter selec-
tion. Ten-fold cross-validation involved multiple trials of six
classification models, including Logistic Regression, Naive
Bayes, Decision Tree, Random Forest, K-Nearest Neighbors,
and XGBoost. The evaluation results of these models are
compared with the state-of-the-art results.

S(t) = P (T > t) (2)

S(t) =

∫ ∞

t

f(u) du = 1− F (t) (3)

Step 3: Survival Analysis In addition to identifying which
pipes will break, we are also interested in determining when
they will break with a high level of confidence. We use Sur-
vival Analysis (SA) to do this analysis. SA uses a set of statis-
tical methods to analyze time-to-event data. Proportional haz-
ard models (PHM) are a class of statistical models that were
used in this study. They determine the relationship between
independent variables and the hazard function over time. Cox
models [Cox, 1972], rely on the assumption that the relative
hazard of an event between two groups remains constant over
time. Using features like ′Pipe Installation Y ear′, we cal-
culated the duration until breakage or censoring. The survival
probability can be estimated by using the Survival Function,
as given in Equation 2, where T is the time to death, and
S(t) is the chance of a pipe surviving after time t. As seen in
Equation 3, the function can also be modeled using the hazard
function, which is the probability of occurrence of the event
at T=t, assuming that the event has not occurred up through
time t. Here, f(u) is the hazard function, F (t) is the cu-
mulative hazard function from 0 to time t and censored data
means that either the pipe did not break, or the study didn’t
show that the pipe broke. Model selection was performed for
Cox PHM, with the penalization factor as the parameter. We
also use XGBoost’s(XGB) model with Survival Embeddings



Figure 1: Subset of the Learned BN for waterpipe breakage for City of Kitchener

[Vieira et al., 2021], an ensembling method as an additional
model to evaluate and compare. Three XGB’s survival em-
bedding models were used to predict survival probabilities,
where an xgb model was added with logistic regression(LoR),
Kaplan-Meier(KM) tests on nearest neighbors, and Kaplan-
Meier tests on trees. C-Index was used for evaluation.

4 Experimental Evaluation
We now describe how the aforementioned U2RPSA ap-
proach is applied on a publicly available datasets of the wa-
ter main pipe distribution. We compare the performance
of our approach to state-of-the-art baselines and discuss the
strengths and weaknesses of our approach. Specifically we
compare the risk prediction results with Omar et al. [Omar et
al., 2023] which to the best of our knowledge is the state of
the art of water main breakage risk prediction.

Data source, Datasets and Preprocessing: In City of
Kitchener datasets [City of Kitchener, b] and [City of Kitch-
ener, a], there are 15931 samples and 27 features in the for-
mer, and 2809 samples and 37 features in the latter. By
merging the Kitchener datasets based on unique pipe identi-
fiers, the resulting table has 64 features. After removing null
values, we were left with 16,958 samples and 21 features.
Categorical variables were quantified using one-hot encod-
ing. The next step was to perform a 2-way ANOVA test, that
would help us in identifying features that were statistically
significant for the target. Those features whose p-value was
less than 0.05 were filtered out, and the final dataset consisted
of 32 features, including the target, that was labeled as ’1’ for
break, and ’0’ otherwise. Lastly, the continuous-valued fea-
tures were normalized by removing the mean and scaling to
unit variance.

Baseline: In Omar et al.’s model, Five features out of thirty
seven were selected for training based on the correlation anal-
ysis done by the authors. Feature selection using correlation
coefficients was performed such that those independent vari-
ables showing correlation with the target were chosen. This
narrowed the feature space to age, material, condition score,
and the criticality score of the pipe, along with the average
annual daily traffic the road above the pipe had to bear. The
condition score here refers to a number from 0 to 10. Lower
condition score means that the pipe is more prone to break-
age. Criticality here refers to the impact of the damage caused
to the civil infrastructure if a pipe were to break.

Evaluation: In Step 1 of U2RPSA, we use the Bayesian
Information Criterion (BIC), incorporating log-likelihood
and regularization terms. The best model discerns statis-
tical correlations in city water infrastructure data. Bayes
net structures elucidate conditional probability with evidence

variables, aiding interpretable inference. As observed in
Figure 1, the Markov blanket consists of Pipe Length,
and Pipe Material, illustrating their relationship with the
Pipe Break target outcome. The directed graph in the fig-
ure is a subset of the structure that was learned and visualized
using the BN Inspector tool.

In Step 2, we applied a suite of ML algorithms to predict
the risk of a pipe breakage. It was observed that the feature
of Condition Score was a ’leaky’ variable. Henceforth, all
the evaluation results and inferences that followed were based
on models that were trained on datasets excluding the pipe’s
condition score feature. As this is a classification problem on
whether a pipe will break or not, the comparison was based
on key evaluation metrics like accuracy, precision, recall, f1-
score, and area under the Receiving Operating Characteristic
curve. Comparing the results of our approach with Omar et
al. under the same conditions, we note a marked improve-
ment in the classification performance in the case of some of
the cases. Figures 2 and 3 describe the performance of 6 mod-
els on the F1 score and Area under the ROC curve. The red
bars are the results of our approach, and the green bars are the
results of the replication of the Omar et al. approach. In both
charts, 4 out of 6 classifiers perform better with our approach
than the replicated. As seen from the graphs, XGBoost out-
performs all the other classification methods on all the key
metrics. The replication of Omar et al. consisted of models
that underwent randomized cross-validation for selecting the
best set of hyperparameters. The ’I’s on top of each bar rep-
resent the standard deviation around the mean. This can also
be seen in the table 1, where the mean value was reported as
the main score and the standard deviation error rate is in the
parenthesis. In the AUROC chart, wherein for 3 models out
of 6, our scores have a lower bound that is higher than the
replicated method’s upper bound. Our approach overcomes
the limitation of data leakage, and shows better scores than
the baseline, excluding the variable that biases the results.

The best-performing classifier was XGBoost, and was ad-
ditionally used to identify the importance of the features. The
top 2 features were the Pipe Material and Pipe Length,
with scores of 0.21 and 0.13 respectively. This implies
that these two features provided approximately 35% of the
valuable information to the decision trees within the learned
model. This aspect can also be validated by observing the
learned Bayesian Network of the dataset from the previous
stage, where the Markov blanket of the target outcome in-
cludes Pipe Material and Pipe Length, the 2 most impor-
tant features of the XGBoost model.

For Step 3, the evaluation was done based on the Concor-
dance index (C-index). It quantifies the proportion of cor-



Accuracy (±SD) AUROC (±SD) F1 (±SD)
Model Alg 1 Alg 2 Alg 1 Alg 2 Alg 1 Alg 2

DT 0.91 (±0.02) 0.89 (±0.01) 0.76 (±0.06) 0.8 (±0.1) 0.59 (±0.14) 0.52 (±0.14)
NB 0.51 (±0.16) 0.85 (±0.03) 0.83 (±0.08) 0.84 (±0.09 0.34 (±0.08) 0.53 (±0.09)

KNN 0.91 (±0.01) 0.85 (±0.01) 0.86 (±0.09) 0.73 (±0.03) 0.59 (±0.15) 0.37 (±0.06)
LoR 0.91 (±0.02) 0.85 (±0.01) 0.9 (±0.02) 0.8 (±0.05) 0.56 (±0.14) 0.0 (±0.01)
RF 0.82 (±0.03) 0.9 (±0.01) 0.89 (±0.03) 0.88 (±0.05) 0.52 (±0.07) 0.56 (±0.13)

XGB 0.92 (±0.01) 0.9 (±0.01) 0.93 (±0.01) 0.9 (±0.02) 0.62 (±0.15) 0.58 (±0.14)

Table 1: Model Performance Metrics - Algo 1:- U2RPSA, Algo 2:- Omar et al. replicated

Figure 2: Step 2 - F1 Score Figure 3: Step 2 - AUROC Figure 4: Step 3 - Survival decline

rectly ordered pairs of subjects according to their predicted
risk scores such that a C-index of 0 indicates that the model’s
predictions are entirely incorrect, while a score of 1 indi-
cates perfect predictive accuracy. This metric helps us under-
stand the model’s ability to rank pipes in terms of their like-
lihood of experiencing a break. Four models were compared:
Cox-PHM, XGB+LoR model, XGB+KM on nearest neigh-
bors model, and XGB+KM on the trees model with bootstrap
meta-estimation. The C-index score were 0.7625, 0.8084,
0.7922, 0.7644 respectively. The XGB + LoR model with
the best C-index score of 0.8084 has the highest predictive
accuracy of survivability of the four models.

We then applied the XBG + LoR model on the test set
which has 3326 rows, out of which 427 had witnessed a
break. Table 2 shows some of the sample results from the test
set where the column names are the years and the values of
those columns are the survival probabilities for each of the six
sample pipes. The six rows in the table are thus examples of
the survival function prediction probabilities. The first three
are for instances where the pipe breaks, and the next three are
instances of those that did not break.

Figure 4 captures the survival prediction probability with
respect to the number of years for a sample of pipes (six in
our case) that do break (indicated by red lines) and those that
do not (indicated by blue lines) in the test data. It can be ob-
served that the survival chance of a pipe reduces after about
39 years if it was labeled as a break (red line) in the test set.
Whereas, pipes that did not break showed a slow reduction in
the survival probability. Also the probability of the red lines
starts to decrease sharply as compared to the blue lines. The
red lines represent the decreasing probability of survival, with
an increase in years. Therefore, with Survival Analysis, we
can estimate how long a pipe might survive given its char-
acteristics. Overall, in regards to the pipeline, a set of pipes
would have the status predicted and the survival chances es-

timated. This strategy aids the decision makers responsible
for pipe breakage prevention to focus on those segments that
need urgent attention.

Br
Yr 2 9 36 39 98

B 0.9996 0.9989 ... 0.9621 0.8580 ... 0.0089
B 0.9996 0.9989 ... 0.9743 0.9515 ... 0.0210
B 0.9996 0.9987 ... 0.9527 0.9224 ... 0.0206
N 0.9996 0.9990 ... 0.9735 0.9695 ... 0.3184
N 0.9994 0.9986 ... 0.9764 0.9541 ... 0.1949
N 0.9996 0.9985 ... 0.9720 0.9507 ... 0.3476

Table 2: Survival prob.; Br - Break or not(B/N), Yr - Years

5 Conclusions and Future Work
The U2RPSA approach offers a holistic solution for pre-
dicting and preventing water main breaks. As opposed to
the state-of-the-art, which focuses more on augmenting the
predictive abilities, we show that combining statistical tech-
niques can take on a more global view. Future research will
involve more extensive evaluation of our approach in the con-
text of New York City water infrastructure. We will seek to
incorporate real-time data and sensor technologies to boost
prediction accuracy. Moreover, we are interested in studying
the effect of larger scale environmental factors like climate
change and urban development on our models that will fa-
cilitate water infrastructure management and examining their
cascading effects across other critical infrastructure.
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