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ABSTRACT

Traffic congestion is ubiquitous in cities across the globe resulting in great economic and
environmental costs. Although real-time traffic updates are now available, the tendency of
drivers to make uncoordinated routing decisions exacerbates the known problems of selfish
routing including traffic congestion and flow oscillation. Existing solutions, in both private
and public domains, do not necessarily provide efficient mechanisms for creating a socially
optimal traffic distribution (i.e., the one that minimizes the total travel time, rather than
those that are individualistic and uncoordinated) to overcome the congestion problem. In
this article, we present a decentralized multi-agent systems-based framework that harnesses
a coordinated route recommendation algorithm while measuring the influence of coordi-
nated decision making to improve the efficiency of the entire vehicular network. We study
how our approach affects performance in synthetic traffic networks and abstractions of real-
world networks. Extensive simulation results show that our approach is able to establish
near socially optimal traffic distribution in networks with varying scales and price of anarchy
values. They also reveal that network complexity not only accounts for network size and
demand but also how this demand is distributed. Our approach produces a near-optimal
traffic distribution even when up to 30% of all vehicles are not coordinated, regardless of
network type. We show that in non-trivial networks, the ability of a subset of vehicles to
coordinate, improves the total travel time of all the vehicles on the network while alleviat-
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ing congestion and oscillation.

Introduction

The traffic assignment problem (TAP), which deals
with the computation of the vehicle flow on each traf-
fic route, has been explored extensively for many
years. One issue with the TAP is that drivers' in a
traffic network are usually selfish, seeking to minimize
their own travel time by choosing the quickest route
to destinations without considering the outcomes of
their choices, thus leading to traffic congestion. The
effect of selfish routing on traffic congestion is
explained by two static equilibrium states in a traffic
network formulated by Wardrop (1952): the user
equilibrium (UE) and the system optimum (SO).
These two concepts are closely associated with the
drivers’ travel time on a route, which is determined
by the total number of drivers per time unit (flow)
using that route. The UE is a state in which every
driver is selfish and the time for each driver traveling
along any route between a source and destination is
the same. The SO is a state in which the total travel

time is minimized. Roughgarden and Tardos (2002)
view the selfish drivers of such a network that lacks
coordination as independent agents in a non-coopera-
tive game. They argue that this type of selfish routing
leads to route choices that form the Nash Equilibrium
(NE). The NE does not necessarily optimize the social
welfare or SO.

Figure 1 illustrates the difference between the SO
and UE. It contains one origin-destination (OD) pair
with two possible routes. While the SO is considered
the ideal traffic distribution, real-world traffic net-
works tend to converge to the UE because selfish driv-
ers tend to select the route with the minimum travel
time ( Li et al., 2017; Wang et al., 2015 ). Assume that
the network has a flow of 8 vehicles. Vehicle travel
times are computed by latency functions I(f), where f
is the vehicle flow on an edge. The latency function of
the upper route is I(f) = f, and that of the lower route
is a constant I(f) = 8. If all drivers are selfish and
there is no coordination between them, then they will
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Figure 1. A Simple Network. (a) UE Distribution and (b) SO Distribution

always choose the route with the lowest travel time.
Each vehicle will keep selecting the upper route until
the individual travel time of the upper route reaches
8. No driver has the incentive to change its route
because the expected travel time for both routes is the
same. In Figure 1a, the UE distribution is reached and
the total travel time is 8 * 8 + 8 x 0 = 64. If the driv-
ers were to coordinate, then both routes would be
used evenly. In Figure 1b, each route has four vehicles
and the total travel time is 4 x4 + 4 %« 8 = 48 which
happens to be the lowest possible value of total travel
time in this traffic network. Thus, the SO is reached.
Drivers often believe that the UE distribution is an
efficient state, but in fact, it not only increases the
vehicle’s total travel time but also easily leads to traffic
congestion (at any point in time, most vehicles are on
the same route) (Roughgarden & Tardos, 2002).

To measure the influence of coordinated decision-
making, we use the concept of price of anarchy (PoA)
(Koutsoupias & Papadimitriou, 1999). The PoA for a
traffic network is defined as the ratio of average travel
time under the UE and SO distributions and is usually
dependent on the type of latency function and the
scale of a traffic network. To reduce the PoA and
achieve the socially optimal distribution in a traffic
network, we propose that an effective mechanism for
coordinating vehicle route choices is required.

Popular traffic navigation mobile applications
(apps) such as Google Maps or Waze (“Google Map”,
n.d.; “Waze”, n.d.) that are designed to help drivers to
choose the fastest routes do not fare well with com-
bating the selfish routing problem. Their (apparently)
greedy route selection based strategies send vehicles to
the fastest routes, thus increasing congestion and
oscillations in traffic distribution ( R. Liu et al., 2016;
Buscema et al., 2009 ). However, since the route selec-
tion algorithms used by these navigation apps are not
public, it is not possible to investigate ways to mitigate
the congestion problem.

In this work, we model a typical traffic network
with multiple origin-destination pairs as a multiagent
system (MAS) consisting of a set of independent
vehicles connected by a GPS-enabled mobile app. The
vehicles are connected to an app-specific server that

has access to each connected vehicle’s location at any
point in time. The server uses the location informa-
tion of the vehicles to execute a centralized route rec-
ommendation algorithm. Each driver that uses the
app can choose to use the route recommended by the
centralized authority or not. The MAS also consists of
drivers that make selfish and uncoordinated decisions
to determine their routes. The proposed framework is
(a) a multiagent system due to the autonomous and
heterogeneous vehicles (coordinated and selfish
agents) participating in it; (b) coordinated, since the
subset of agents that use the app are connected to a
central server. The central server takes information
from multiple agents, computes policies based on this
joint information and imparts them to the connected
subset of app-enabled vehicles in the traffic network,
and (c) decentralized, since the route choice decisions
are distributed among the connected subset of app-
enabled vehicles (which have the choice to follow or
reject the recommended route) and those not con-
nected to the app (which can choose from a variety of
self-interested choices). Using this MAS framework,
we highlight the advantage of harnessing a connected
subset of vehicles that is capable of coordination and
favors the socially optimal distribution to improve the
efficiency of the entire vehicular network.

To our best knowledge, there is a gap in the litera-
ture with regard to minimizing the PoA of a traffic
network; in other words aligning the UE to the SO of
the network. Traditionally, this is investigated by
focusing on tolling, and the similar road pricing
mechanisms discussed in the section “Background and
related work.” Even so, there has been a surge in stud-
ies investigating the use of the driver’s communication
networks as well as online social networks to coordin-
ate drivers (T. Liu et al., 2017; Li et al., 2017; New
Cities Foundation, 2012; Pathania & Karlapalem,
2015). However, these works have the following limi-
tations: some deal with simple traffic networks (usu-
ally with two routes only); others ( T. Liu et al., 2017;
Li et al, 2017 ) use resource-intensive centralized
techniques; while the social network based approach
in Pathania and Karlapalem (2015) is limited to train
network systems where the route choices are more



constrained than in road networks. Against this back-
ground, we consider more realistic scenarios, as well
as investigate how communication and location tech-
nologies can be put into service of the aforementioned
alignment between UE and SO. We also note that it is
not trivial to access the necessary data; while network
topology can be easily exported from platforms such
as OpenStreetMap (“Open Street Map”, n.d.), the
demand data (origin-destination matrices) are seldom
available for such maps.

The main contributions
as follows:

of this article are

e We present an MAS coordination framework that
leverages the drivers’ real-time information to help
establish the optimal traffic distribution and over-
come the inefficiency of the UE.

e We provide a comprehensive discussion of the
related work in this area and discuss why our
work is novel.

e We show that our framework is able to produce a
near-SO distribution even when not all drivers are
coordinated.

e We show that our framework creates more stable
traffic distribution as the flow of coordinated driv-
ers’ increases.

o We explore the effect of different types of latency
functions on our framework resulting in varying
traffic performance characteristics.

The remainder of this article is organized as follow-
ing. First, we discuss relevant literature in the section
“Background and related work.” Then, we present our
proposed approach in the section “Approach” fol-
lowed by an extensive empirical evaluation in the sec-
tion “Experiments.” Finally we conclude with a
summary of our observations and discussion of future
work in the section “Conclusion and future work.”

Background and related work

This article addresses the demand perspective of
transportation systems. Specifically, it deals with the
assignment of the demand to the infrastructure (the
traffic network), i.e., we deal with the TAP. There is
an extensive literature (Ortizar & Willumsen, 2011)
that deals with assignment of demand. The concepts
of route guidance, ATIS (advanced travellers’ informa-
tion systems) and road pricing (which we discuss
ahead) are related to the assignment problem, and
also to issues regarding how to inform and divert the
users of the transportation system. Multiagent systems
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have been used to deal with both ITS and ATIS as
described in (Bazzan & Kliigl, 2013a, 2013b; Chen &
Cheng, 2010; Jin, Hui, & Ping, 2003).

In transportation network research, the problem of
selfish routing among a group of non-cooperative driv-
ers is modeled via congestion games (Lim & Rus,
2012). In a congestion game, the cost for each route is
determined by the flow of all drivers using that route.
Each driver chooses a route to minimize their travel
cost (e.g., travel time), which may result in congestion.
This game has at least one pure strategy Nash equilib-
rium in which none of the drivers can reduce her
travel cost by unilaterally changing a route. As dis-
cussed in section “Introduction”, the Nash equilibrium
is known as user equilibrium (UE), while a socially
optimal distribution of traffic is represented by the so-
called system optimum (SO) (Wardrop, 1952). At the
SO, traffic should be arranged in congested networks
in such a way that the total travel cost is minimized.
It has been shown the Nash equilibrium or UE in
congestion games could be inefficient (resulting in
larger total travel cost) and a socially optimal (SO)
distribution is desirable (Li et al., 2017).

Most of the aforementioned works that use multi-
agent techniques aim to investigate how agents reach
the UE. The quest for an approach, including the use
of MAS, to align the UE and the SO is still an open
research question. There is prior research on using a
framework called collective intelligence (COIN)
(Agogino & Tumer, 2008; Tumer, Welch, & Agogino,
2008) which show that, during reinforcement learning,
multiagent coordination can be used to reduce con-
gestion in road traffic as well as in air traffic, respect-
ively. While the former has a similar goal as ours,
their approach is based on selecting departure time,
not routes. Also, Klein et al. (2018) considered a traf-
fic information system that can persuade drivers to
cooperate. However, they use a simple scenario with
just two routes.

With respect to congestion games, the price of
anarchy (PoA) (Koutsoupias & Papadimitriou, 1999)
is a metric used in this article to measure how the
efficiency of a system degrades due to selfish behavior
of its agents. It has been shown that for any general-
ized routing problem with linear latencies, the PoA is
at most 4/3 (Roughgarden & Tardos, 2002), and the
PoA of a small-scale network is generally higher than
that of a large-scale network (Youn et al., 2008).

Several mechanisms based on road pricing
(Fleischer et al., 2004; Xiao et al., 2013) or learning
(Bazzan, 2019) have been proposed to improve the
UE in traffic networks. A more realistic version uses a
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scaled marginal-cost road pricing technique (Wang
et al.,, 2015) to improve the PoA. While the algorithm
guarantees that the PoA will reach one for two group
players, it fails to do so in more general cases, which
limits the applicability of this work. Moreover tolls
and road pricing mechanisms have societal costs and
associated objections that make them less appealing.

In Hasan et al. (2016), the Traffic Route Preference
Function (TRPF) is introduced as a measure that indi-
cates whether the number of drivers on a route is
higher than the theoretical optimal. This measure is
used to help direct the traffic network to converge to
the appropriate SO distribution. The TRPF approach
assumes that human drivers can estimate the differ-
ence between the number of current drivers on a par-
ticular route and the optimal number of drivers for
that route and the TRPF value is updated after one
round of cars pass through the network. These
assumptions are unrealistic for real traffic environ-
ments because human drivers are incapable of exactly
knowing the optimal number of drivers on a route.
Moreover, updates after an entire round can cause
large oscillation of the number of drivers on a given
route when the proportion of drivers using the TRPF
is high, because in each round, TRPF users choose the
same route with the highest TRPF value. The frame-
work described in this article seeks to address these
general problems.

It can be seen that these works address a variety of
issues related to alleviating traffic congestion and/or
use different methods. Some works do address align-
ment of UE to the SO. However, they deal with differ-
ent problems: air traffic control (Tumer et al., 2008),
departure time (Agogino & Tumer, 2008), communi-
cation bandwidth (T. Liu et al., 2017), flexible mobil-
ity (Bucchiarone, 2019), re-routing to bypass
congestion ( Falek et al, 2022; Wang et al., 2014 ).
Some use classical mechanisms to reach such align-
ment, such as toll (Fleischer et al., 2004) or other
road pricing schemes (T. Liu et al., 2017). With
respect to centralization, works stemming from the
optimization community tend to assume a central
entity in charge of giving some incentive for drivers
to align with the SO ( Fleischer et al., 2004; Li et al.,
2017; Lim & Rus, 2012; T. Liu et al.,, 2017; Zhang &
Nie, 2018). Others can be considered partially central-
ized as not all routes are determined or imposed by
the central entity. For instance, agents may learn
autonomously in a decentralized fashion(Agogino &
Tumer, 2008; Tumer et al., 2008; Xiao et al., 2013);
choose not to follow the recommended route in the
present paper or while using the TRPF approach

(Hasan et al., 2016); or use persuasion mechanisms,
but with just two autonomous agents (Klein et al.,
2018). The partial decentralization in our multiagent
approach facilitates agent autonomy. Specifically, we
use two probabilistic parameters as metaphors
for autonomy.

As is common in the literature related to the PoA
(e.g., Roughgarden and Tardos (2002) and works that
followed it), we assume that the flow of vehicles per
OD pair remains nearly constant in a given time
frame. This time frame could be the morning or after-
noon peaks, or the inter peaks scenario. This is com-
monly known as a static traffic assignment problem
(STAP). Hence, the constant demand (flow) of the
entire traffic network ensures that the SO distribution
which is a known parameter in the CRUM model
remains unchanged. We note that constant demand
does not mean that the flow per edge remains con-
stant; this is because each driver has several options to
travel from its origin to its destination making the
flow per edge dynamic. While we consider dynamic-
ally changing flows for the entire network outside the
scope of this work, stacking of time windows where
the demand remains constant to handle dynamic sit-
uations is one possible solution. In recent work,
(Shynkar et al., 2022), we investigate the role of meta-
level control mechanisms capable of reasoning about
dynamic traffic situations in a non-myopic fashion.

In short, while there is a plethora of works address-
ing TAP and congestion management, this article
presents a novel approach where a subset of vehicles
on the road network coordinate to improve the total
travel time of all the vehicles on the network while
alleviating congestion.

Approach

We address the traffic congestion problem using the
MAS experimental framework described in Figure 2.
The framework consists of vehicles in the connected
subset of app-enabled vehicles (red) and selfish (yel-
low) vehicles. As described in section “Introduction”,
the vehicles in the connected network use a GPS-
enabled mobile application to connect to a route rec-
ommendation server. The server uses the location of
the vehicles that are connected to it via the app along
with an estimate of the location of the others (see dis-
cussion ahead), as input to the route-computation
algorithm, we have developed. We «call it the
Coordinated Route Updating Mechanism (CRUM).
Vehicles in the connected subset are thus coordinated;
henceforth, we call the connected subset of app-
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Figure 2. MAS Experimental Framework with centralized CRUM server for vehicles on connected subset of app-enabled vehicles
(red vehicles) and selfish routing by selfish vehicles (yellow vehicles).

enabled vehicles the CRUM network; the server that
manages the app is called the CRUM server; and the
vehicles in this network are called CRUM vehicles. A
CRUM vehicle upon entering the road network will
have access to the CRUM server’s most recent route
recommendation at the beginning of its journey and
can choose to wuse the recommended route or
ignore it.

Selfish vehicles, on the other hand, are not part of
the CRUM network and seek to minimize their own
travel time by choosing the quickest route to destina-
tions without considering the (potentially negative)
outcomes of their choices on the average travel time
of the entire network.

This MAS experimental framework mentioned
above is hosted on a server called the MAS experi-
mental server which is used for evaluation purposes
only. The MAS experimental server has access to the
location of every vehicle on each of these routes (and
hence current flow) on each route. The CRUM server
requires location information about CRUM vehicles
and other information that we elaborate below. We
now provide a formal description of the problem.

Problem model

The traffic network is represented by a directed net-
work G = (V,E), as defined by Roughgarden
(Roughgarden & Tardos, 2002), where V is the vertex
set (locations), E the edge set (roads) and origin-des-
tination (OD) pairs {01,d;}...{ox, di}. Each OD pair
can contain multiple routes denoted by the set R; =
{r;} and R=U;R;. A route r; € R; is defined as the
set of edges in a simple path that travels from the ori-
gin o; to the destination d;. The networks considered

in this article (see ahead) have one or more OD pairs.
A flow is a function f: R — R™, and the flow of a
route is defined as f, = f(r). For a fixed flow f, the
flow of an edge is defined as f, =) _ ..., f;. Each edge
e € E has an associated load-dependent latency [ (-).
We assume the latency functions to be non-negative,
differentiable and non-decreasing.

The latency function . (f,) calculates the travel time
for a driver on an edge. It is dependent on the load
or flow f, and can be linear or nonlinear and is meas-
ured in some unit of time, which depends on the
units of f, and other constants and variables. For
example, a linear latency function is given in Equation
(1), where f, is the free-flow travel time of edge e, d,
is a multiplicative constant, and f, is the flow on e.

le(ﬁa) - te+de *fe (1)

The Bureau of Public Roads (BPR) function is
widely used as a nonlinear latency function. It
depends on free-flow travel time and vehicle flow cap-
acity y, of an edge e as shown in Equation (2), where
I, is the travel time at edge e given the edge traffic
flow f,, t. is the free flow travel time on edge e per
unit time, y, the edge capacity, and 4. and b, are
parameters for calibration.

m(@) o

The free flow times for the linear and BPR latency
functions have similar implications for the physical
characteristics of a road, and they often share the
same value when referring to the same edge in a
graph. The latency of a route r with respect to the
flow f is the sum of the latencies of the edges in the

route, denoted by L.(f) = > .., L(f.)-
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Our model is viewed as an instance of the TAP
(see Section “ ). The theoretical UE flow along a
route is found by solving a convex optimization using
the method of successive averages (MSA) (Sbayti
et al., 2007). The theoretical SO can be found using
IBM’s CPLEX for linear latency functions and
CVXOPT? that handles nonlinear convex optimization
such as the BPR latency function.

The core challenge we address in our model is the
design of an effective coordination mechanism that
enables traffic distribution to converge to the SO and
eliminate congestion caused by the UE. We also study
the effect of the linear and BPR latency functions on
our model. Using the linear latency function in a traf-
fic simulation framework usually comes with higher
efficiency due to its simple form, but the BPR latency
function provides a more realistic model of a traffic
simulation because of its non-linearity and higher sen-
sitiveness to vehicle flow. By utilizing both functions
in our experimental framework, we are able to explore
the effect of different latency functions with various
parameter settings on traffic performance.

We introduce two important vehicle-related param-
eters in our model: G is the probability of a vehicle
changing its route decision (instead of using its most
recent route) in every round and p is the fraction of
CRUM vehicles. The parameter G exerts influence on
the stability of vehicle flow distribution, and p expli-
citly reflects the number of coordinated vehicles in a
distributed traffic system. The manipulation of these
parameters allows us to evaluate the effectiveness of
our approach from a comprehensive perspective.

We make the following assumptions in our model:

e Only a fraction of vehicles in the MAS simulation
framework are connected by the GPS-enabled
mobile application, which offers vehicles route rec-
ommendations while not expecting drivers to
interactively use the app to provide real-time
updates about their travel experience.

e The centralized algorithm for the CRUM network
is modeled as an instance of STAP in a transporta-
tion network where the total demand of the net-
work with selfish drivers and coordinated drivers
remains constant.

e Fach selfish vehicle is viewed as a selfish agent;
after performing experimentation (exploration),
these drivers choose routes with the minimum
flow (travel time).

o There exists a set of routes that are used on a regular
basis by selfish vehicles, for instance the commute
route from the suburbs to center city; this enables

these vehicles to accumulate traffic experience which
assists them to make greedy decisions of routes.

Algorithms

In the CRUM network, each vehicle is modeled as an
agent. A centralized server continuously collects infor-
mation from the agents to compute a route recom-
mendation policy at each state. However, each CRUM
agent makes an independent decision on whether to
use the CRUM-recommended route or the most
recently used route, in other words, the decision
whether to use the CRUM-recommended route is a
distributed decision among the CRUM vehicles.

Algorithm 1 is the pseudocode description of our
multi-agent traffic simulation framework. The input con-
sists of the selected network’s topology, information about
traffic network’s demand (consisting of both CRUM and
selfish vehicles) and the number of simulation rounds.
Each simulation round involves execution of Lines
1.1 — 1.9 and each vehicle in the simulation executes Lines
1.2 — 1.8. Each vehicle first makes a route choice in Line
1.3 before entering the traffic network. We present details
of the route choice function in Algorithm 2. After choos-
ing the route, the vehicle travels through that route and
the corresponding travel time is recorded in Line 1.4. For
CRUM vehicles, the travel time is recorded by the mobile
app, which is then used to update CRUM server’s compu-
tation of the recommended route in Lines 1.5—1.7. If a
CRUM vehicle leaves the traffic network at time t, then
CRUM’s recommended route is simultaneously updated
at time t. This new route recommendation is only avail-
able to the next CRUM driver entering the network at
timestep t 4 1 or later.

Algorithm 1: TrafficSimulation(V,NG,n)

input: V: Set of vehicles from the CRUM and selfish
subnetworks NG: Network graph consisting of
vertices, edges, and routes n: number of
rounds
output: route_flows_avg, route_flows_std, route_ti-
me_avg
for i — 1, n do
for v € V do
chooseRoute(v)
updateTravelTime(v)
if CRUMVehicle(v) then
updateCRUMServer(v)
end
end
end
return

(route_flows_avg, route_flows_std,

route_time_avg)



Algorithm 2: chooseRoute(v)

input: v: vehicle

output: k: route selected by the driver

initialize a, b < random value between 0 and 1
G= probability of driver d changing route
d, = set of difference values
R,= set of routes available to the vehicle
last ;poice,=last route selected by the vehicle
historical;,e,=historical travel time of vehicle
travel,.,,,t,= number of times that the vehicle trav-

eled through each route

if a < G then

k < last_choice

else if CRUMVehicle(v) then

k < chooseCRUMRoute(R,, 0,);

else if b < € then

k < chooseRandomRoute(R,);

else
k « chooseRouteByExperience(R,, historicalsipe,, travel
count,);
end
return(k)

For selfish vehicles, the travel time in Line 1.4 is
recorded as part of their traffic experience. As dis-
cussed earlier, selfish agents in our model use their
individual prior traffic experience to determine the
route choice with minimum travel time. As the num-
ber of rounds in Algorithm 1 increases, it is expected
that each selfish driver gradually becomes familiar
with the traffic network and knows which route has
the lowest traffic cost for them. The simulation server
records all the routes selected by both CRUM and
selfish vehicles in the previous rounds and the corre-
sponding travel times for evaluation purposes.

The CRUM server has knowledge of both the num-
ber of CRUM vehicles and the travel times of each
CRUM vehicle using each of the routes (Line 1.4). It
also has access to the theoretical SO, which we call
DN; for each route r since the latency function is
known. Finally the CRUM server requires flow esti-
mates of other (selfish) vehicles in the network. Such
estimates can be obtained in a variety of ways: (i)
extrapolation from the data on the CRUM vehicles;
(ii) historical data; and (iii) data acquisition from
external providers. As we mention in the discussion
about future work, the extrapolation from the data on
CRUM vehicles can be realized by using machine
learning techniques. In this work, we assume that self-
ish drivers, having explored routes, have settled on
routes that have proven to be efficient for them. In
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other words, the selfish drivers are assumed to have
already converged in terms of route choices.

Using the location information of CRUM vehicles
and flow estimates of non-CRUM vehicles, the CRUM
server is thus able to compute DN,, which is the esti-
mate of the total number of vehicles on each route r.
We introduce the delta vector J, which represents the
numerical difference between the estimated current
traffic distribution and the theoretical SO distribution:

S, = DN, — DN; 3)

The CRUM recommended route is geared to redir-
ect traffic to the route which has the highest margin
to take on new vehicles until the socially optimal allo-
cation for that route is met. In other words, it will be
the route associated with the lowest flow difference
between the current estimated distribution and the SO
(selected route denoted by k):

k «— argmin{0,,} (4)
ri€R;

Selfish drivers, on the other hand, make route deci-
sions based on their experience when possible, which
is reflected by average costs of their traveled routes.

Algorithm 2 is the pseudocode of the
chooseRoute(d) in Algorithm 1Line 1.3. It determines
the route choices of both CRUM and selfish vehicles.
We introduce two parameters, a and b, represented as
random floats between 0 and 1 that are initialized in
Line 2.1. These parameters are vectors corresponding
to each vehicle. They are used to determine the deci-
sion choices of the vehicles including whether to use a
prior route or the CRUM-recommended route or a
random route.

Lines 2.8 through 2.17 show how different types of
drivers can choose different routes. If a is smaller
than G, the vehicle chooses the same route it used in
the last round. Else, if a is greater than G and the
vehicle is a CRUM vehicle, the vehicle will use the
CRUM server’s recommended route updated by all
the preceding CRUM vehicles.

If a is greater than G, then the vehicle is a selfish
vehicle and if the parameter b is also smaller than
0.05 (Lines 2.12—2.13), the vehicle will randomly
select a route. The threshold of 0.05 for b represents
the small fraction of drivers that can select a route
randomly. This encourages vehicles to explore new
routes, which will allow them to have a more diversi-
fied experience and choose routes that truly minimize
their travel time. Such exploratory behavior allows
selfish vehicles to explore routes with the minimum
travel time.
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Table 1. Experimental network characteristics summary.

No. of OD pairs No. of drivers Max. No. of routes linear PoA BPR PoA
Braess 1 4000 3 1.33 1.94
ND Network 4 2000 25 1.01 1.06
Sioux Falls 528 360600 inf 1.00 1.04
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(a) Parameters of the Linear Latency Function
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(b) Parameters of the BPR Latency Function

Figure 3. Braess’ Network. (a) Parameters of the Linear Latency Function. (b) Parameters of the BPR Latency Function

Selfish vehicles with a greater than G and b greater
than 0.05 (Lines 2.14 — 2.15) will have their expected
route determined by the average travel time of selfish
vehicles for each route calculated using the traffic data
from the previous rounds. We reiterate that the
expected route computation for selfish vehicles is
independent of the CRUM server.

The conditional statements described above are
summarized as follows:

e if a < G, all vehicles, selfish or CRUM, then use
their individual previous route.

e if a > G, and a CRUM vehicle, then use CRUM
recommendation.

e if a > G, and a selfish vehicle, then use random
choice if b < e€; use the experience information
if b>e.

Experiments
Networks

We study the performance of the CRUM-based traftfic
optimization model on three networks of increasing
complexity. Our use of these networks is due to the
fact that they have both topology and demand (full
OD matrix plus latency functions) published in the
literature ( Braess, 1968; Nguyen & Dupuis, 1984;
“Transportation problems hub”, n.d. ). Moreover, they
are frequently used as benchmarks. We provide a
summary of the characteristics of the three networks
in Table 1.

Besides these benchmarks, we also discuss results
on modifications of these networks, such as what hap-
pens when different latency functions are used.

Braess network

The first network (depicted in Figure 3) is inspired by the
Braess paradox (Braess, 1968), where there is an incentive
for drivers to greedily choose a route with the lower cost
even though it leads to an increase in average travel time.
Braess is a synthetic network with a relatively simple struc-
ture. It consists of one OD pair and five edges that are
associated with either a linear latency function (Figure
3(a)) or a BPR latency function (Figure 3(b)).

Nguyen Dupuis (ND) network

The second network is a medium-scale network
(Nguyen & Dupuis, 1984), with four OD pairs that
are combinations of two origins (nodes 1 and 4) and
two destinations (nodes 2 and 3) as shown in Figure
4. By enumerating all possible routes for these OD
pairs, we find 25 routes in total. The overall demand
of this network is 2000 drivers. The PoA is around
1.01 with a linear latency function and 1.06 with a
BPR latency function. Compared to the Braess’ net-
work, the ND network has a lower PoA.

Sioux falls network

The third network is an abstraction of the central por-
tion of the city of Sioux Falls, South Dakota, depicted
in Figure 5. Unlike the first two networks, the roads
in this network are represented by bi-directional edges
going in the opposite directions. There are 24 nodes
and every distinct node-to-node pair is considered an
OD pair with positive demand. A total of 360600
drivers are assumed to travel through this network
and the PoA is even smaller than that of the ND net-
work given the very large scale and complex network
structure.The maximum number of routes is infinite
due to the existence of loops. We use standardized
network data’ for our evaluation. The parameters for
the BPR latency function (Equation (2)) were set to
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Figure 4 Nguyen Dupuis (ND) Network.

Destination

Figure 5. Sioux Falls Network.

a, =0.15 and b, = 4 for the latency function as is
common in the literature (e.g., (Petrik et al., 2014)). It
is based on expert judgment for a medium-sized city.

In summary, the Braess, ND, and Sioux Falls net-
works are chosen primarily because with their varying
number of routes, OD pairs and latency functions,
they are representative of a broad range of traffic net-
works for the STAP model.

Simulation setting
We conduct simulations on the above three networks

with the following goals:

e Goal I: Show that the CRUM-based MAS frame-
work overcomes the inefficiency caused by selfish

drivers in networks of different scales by creating a
near SO distribution of flows.

o Goal 2: Show that the CRUM-based MAS frame-
work is able to generate a more stable traffic distri-
bution than the traffic model that does not use any
explicit coordination.

e Goal 3: Study the robustness of the CRUM-based
MAS framework with respect to efficiency and sta-
bility under various parameter (G and p) settings.

e Goal 4: Study the robustness of the CRUM-based
MAS framework with respect to performance when
different latency functions are applied.

We vary the two model parameters G = [0.4, 0.6]
(probability of a vehicle changing its route in each
round), p = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
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(fraction of drivers that use CRUM to choose routes)
to observe the effect of CRUM-based algorithms on
traffic distribution (average number of drivers in each
route), the drivers’ average travel time, and the stand-
ard deviation of flow for each route. The range for G
* was chosen to study the effect of when most of the
drivers change routes versus only a few of the total
number of drivers change routes in each round. The
value of € in Algorithm 2 is set to 0.05.

Each experiment reports the results of 200 rounds.
A round represents a single trip of a vehicle from its
origin to destination during which the vehicle chooses
a route exactly once. The results are generated by tak-
ing the average of the last 50 rounds once the traffic
distribution stabilizes.

Experimental results

The experiments below investigate the effectiveness of
CRUM-based MAS framework on the three networks:
Braess (Figure 3), ND (Figure 4), and the Sioux Falls
network (Figure 5), with a constant flow of 4000,
2000, and 360,600 drivers, respectively. Each network
when combined with the linear latency function is
called the linear model of the network and when com-
bined with the BPR latency function is called the non-
linear model. The experiment results include the
average travel time and flow oscillation, presented in
Figures 6 and 7 respectively. For each plot in Figure
6, the dashed line represents the drivers’ average travel
time at the theoretical UE (upper bound) and the dot-
ted line represents the theoretical SO (lower bound).
We use the theoretical UE and SO as baselines since
comparison of the CRUM-based MAS algorithms to
WAZE or similar apps is not practically possible (the
route selection algorithms used in those apps are not
available to the public). Table 2 describes the theoret-
ical SO and UE average travel time computed using
MSA (Sbayti et al., 2007) and optimizers for the linear
and nonlinear models, respectively, with respect to the
three traffic networks.

Comparison by latency functions

We evaluate our model using both linear and BPR
latency functions. In all plots of Figure 6, as p
increases (i.e., the of CRUM vehicles
increases), the average travel time decreases in all traf-
fic networks. With the linear models, the average
travel time decreases in almost a linear fashion, but

number

this trend is not observed with the nonlinear models.
Compared to results obtained from the linear model,

the average travel time is generally closer to the
socially optimal travel time in the nonlinear model.

In Figure 6b, the traffic distribution for the Braess
network reaches the near-SO distribution when 60%
of the total vehicles are CRUM vehicles (p=0.6),
while with the linear model of the Braess network,
Figure 6a shows that the average travel time gets close
to the SO when 80% are CRUM vehicles (p=0.8).
Similarly, for both ND and Sioux Falls’ networks in
Figure 6c-f, traffic distributions reach the SO at a
lower p value in the nonlinear model than those in a
linear model. As indicated by the plots in Figure 6, in
general, while the traffic distribution when using the
linear model does not converge as fast as compared to
using the nonlinear model, it can still be close to the
SO distribution at p > 0.7. We have shown that our
proposed framework is more efficient for networks
using the BPR model which as mentioned earlier, is
the latency function that is more representative of real
traffic. We have also shown that the framework results
in improved performance for networks in which UE
and SO varies significantly (i.e., Braess and ND) as
well as networks in which UE and SO are closer (i.e.,
Sioux Falls in 6(e)). Thus, Goal 1 which states that the
CRUM-based MAS framework overcomes the ineffi-
ciency caused by selfish vehicles in networks of differ-
ent scales by creating a near-SO distribution of flows
is achieved.

Comparison while varying G and p:

All plots in Figure 6 indicate that the variation of G
does not necessarily influence the vehicle’s average
travel time. Algorithm 2 ensures that while G does
not affect the convergence point of the traffic distribu-
tion, it influences the vehicle’s route choices and alters
the rate of convergence. When p is equal to 0, nearly
all the vehicles are selfish and the average travel time
of Braess’ and ND networks is very close to the aver-
age travel time at UE. When p is high (e.g. p=0.9),
almost all the vehicles are coordinated by the CRUM
server and the average travel time of Braess’ and ND
networks also becomes close to the average travel time
at SO. However, this phenomenon is not observed in
the Sioux Falls network. While the average travel time
decreases smoothly as p increases in the Sioux Falls
network, the individual travel times are actually higher
than the theoretical UE for most values of p in the
case of both latency functions. We argue that these
results are caused by the complexity of a network.
Among the three networks used in our simulation,
the Sioux Falls network has (a) the most complicated
topology of the three representative networks studied,
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Figure 6. Average Travel Time with G = [0.4, 0.6] and p varying from 0.1 to 0.9; Figs. (a), (c) and (e) use linear latency function
while Figs. (b), (d) and (f) use BPR latency function for Braess, ND and Sioux Falls networks respectively.

(b) a low PoA and also (c) the highest number of
vehicles. Finding the UE distribution involves nonlin-
ear programming, or convex optimization. In a large
scale network, any unexpected behavior of vehicles
(even it is a small-extent data oscillation) will cause
traffic distribution to deviate from the convergence to
UE and leads to average travel time that is higher
than the theoretical UE travel time.

Our observations seem to indicate that network
complexity not only takes into account network size
and demand but also how this demand is distributed,
number of OD pairs and so on. In Table 1, we show

the PoA (indicating the distance between the Nash-
based UE and the SO) of the 3 networks is lower for
both the ND network and Sioux Falls than the Braess
network. In other words, the PoA—which indicates
the potential for performance improvement—is high
for Braess and low for Sioux Falls. Our coordination-
based approach provides an appreciable performance
improvement for the ND network despite the lower
PoA. However our results for Sioux Falls, which not
only has a lower PoA but also is a larger network
with many more drivers than the ND and Braess net-
works, as shown in see Table 1) do not show a
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Figure 7. Vehicle Flow Oscillation for Networks.

Table 2. Average travel time (given in time units) at UE and
SO for different networks.

Braess’ network ND Network Sioux Falls" network

UE SO UE SO UE SO
linear 79960 60020 50.2766 50.0249  383.4985 383.4893
BPR 79975 41326 39.6501 37.3760 20.7816 19.9598

performance advantage. As seen above, the individual
travel times are higher than the theoretical UE for
p<0.7. In the literature (or in the available testbed
repositories), almost all networks have a low PoA and
in general, we expect that for low PoA networks and
lower p (fraction of CRUM vehicles), the average
travel time of the vehicles will be high. That said,
based on the Sioux Falls results, we expect that as p
increases, our approach will give a performance
advantage over the Nash-based approach in larger net-
works with complex topologies and higher number
of drivers.

(©)

Oscillation in vehicle flow:

Figure 7 describes the oscillation in vehicle flow,
which is the sum of the standard deviations of the
flow for each route, for different network models.

For the Braess’ network shown in Figure 7(a), the
flow oscillation decreases relatively quickly from p=0
to p=0.2. A significant reduction of flow oscillation is
observed within this interval when a nonlinear model
with G=0.6 is used. In general, the nonlinear model
results in more oscillation than a linear model. A
smaller value of p decreases the number of coordi-
nated vehicles, and a larger value of G decreases the
probability of the vehicle using the CRUM-recom-
mended route. Both parameters play a critical role in
the decrease in coordination and increase in flow
oscillation. Thus, when the nonlinear model is used
with G=0.6, the flow oscillation is much higher than
those in other models in Figure 7a. When p > 0.2, the
oscillation decreases slowly and variations in the



latency function type and parameter G do not affect
the oscillation curve too much.

For the ND network (Fig. 7(b)), oscillation curves tend
to decrease linearly, and no specific trend with respect to
the effect of the latency function type and parameter G on
the flow oscillation is observed. Note that the y-axis scale
for the ND network is much smaller than the other two
plots in Fig. 7 which explains the more irregular trends.

For the Sioux Falls network (Figure 7(c)), the oscilla-
tion curves decrease in a smooth linear fashion.
Compared with the other two plots in Figure 7, there is
obvious distinction with respect to oscillations in flow
when models with different latency functions are used.
The traffic distribution modeled with a nonlinear and a
higher G value is more unstable than that with a linear
model and a lower G value. From Figure 7, flow oscillation
in networks with different scales and demands, exhibits
different trends with varied models and G, but they all
have a decreasing trend.

In summary, as the number of CRUM vehicles
increases, we note that the flow oscillation for every
network decreases. This supports our Goal 2 which is
the CRUM-based MAS framework is able to generate
a more stable traffic distribution than the traffic
model that does not use any explicit coordination.

Combined with our analysis of vehicle’s average
travel time above, these observations enable us to
achieve our robustness goals described in Goal 3 and
Goal 4 which are, respectively, to study the efficiency
and stability of the CRUM-based MAS framework
under various parameter (G and p) settings and the
performance of the CRUM-based MAS framework
when different latency functions are applied.

Braess network deep dive:

Of the three networks, the Braess network has the
highest PoA and thus the highest potential for
improvement in performance. We use this case study
to further investigate the effectiveness of the CRUM-
based coordinated approach to overcome the negative
effects of selfish routing. As aforementioned, in Figure
6a and b, as p increases (i.e. the number of vehicles
that use CRUM increases), the average travel time of
all the vehicles (CRUM and selfish vehicles) in the
Braess network decreases. However, the variation of G
does not necessarily influence the average travel time
of all the vehicles.

We now investigate the effect of this coordination
on CRUM vehicles as opposed to selfish vehicles.
Figure 8a and b focus on the average travel time of
CRUM vehicles and selfish vehicles when G=0.4 and
0.6, respectively, with p ranging from 0.1 to 0.9 with a
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linear latency function, while Figure 8c and d show
the average travel time under the same conditions
with the BPR latency function. The CRUM vehicles in
both plots show the similar behavior where the aver-
age travel time is monotonically decreasing as p
increases but is slightly above average travel time for
the entire network for p < 0.6. The selfish drivers also
experience a decreasing trend in their average travel
time for p<0.6 but then exhibit an exponential
increase in average travel time as p increases. As p
increases, the number of CRUM vehicles in the net-
work increases implying the CRUM network is more
coordinated and the CRUM vehicles are using the
optimal routes to reduce their travel time. The num-
ber of selfish vehicles, on the other hand, decreases
making them more isolated and greedy in their
choices, thereby resulting in a significant increase in
their travel time. We argue that CRUM vehicles would
be willing to take on the initial small cost of slightly
higher average travel time to receive the advantage of
lower average travel times as more vehicles join the
CRUM network. This motivates the incentive for driv-
ers to join the CRUM network and shows that Goal 1
is achieved in the case of the Braess’ network. In the
previous section, we discussed how the coordination
in the CRUM-based MAS framework leads to a more
stable traffic distribution in the Braess network than
using a selfish routing framework (Goal 2). We also
showed the robustness of the CRUM-based is robust
with respect to efficiency and stability for various par-
ameter settings (Goal 3) and under different latency
functions (Goal 4).

We now discuss the effect of the number of rounds
on the average travel time in the Braess network. The
previously described experiments are determined over
200 rounds, with the average travel time being com-
puted from the observed car flow in the last 50
rounds when the traffic distribution on each route has
stabilized. We thus argue that the rate of car flow can
be viewed as a proxy for the average travel time of the
vehicles. Figure 9 illustrates the convergence rate of
car flow in the Braess network for varying parameter
settings. The first plot Figure 9a shows the car flow
for the 3 routes (SvD, SwD, and SvwD) when using
the linear latency function with G taking on the values
0.4 and 0.6 and p=0. It can be observed that as the
number of rounds increases, the car flow on each
route varies quite a bit for the first 20 rounds but
then gradually stabilizes leading to the total travel
time reaching its minimum value. The average travel
time as well as flow oscillation are calculated from the
last 50 rounds. This shows that as the number of
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Figure 8. Average Travel time of CRUM vs Selfish Vehicles for Braess network using linear vs BPR latency functions.

rounds increases, the car flow and thus the average
travel time improve until it stabilizes. The other plots
Figure 9b and ¢ shows similar trends of the car flow
for the linear latency function G=0.4 and G=0.6
with p=0.5 and p=0.9, respectively. The plots Figure
9d-f show convergence of the car flow for the BPR
latency function for G=0.4 and G=0.6 with p=0.1,
0.5 and p=0.9, respectively. We note that the second
set of plots with the BPR show a slightly better con-
vergence to the SO than those with the linear latency
function (once route flow becomes stable) as evi-
denced in the previously results comparing the
latency functions.

Conclusion and future work

In this article, we presented a coordinated technique
to address the problem of selfish routing in transpor-
tation networks by leveraging the vehicles’ real-time

data. We developed a Coordinated Route Updating
Mechanism (CRUM) for coordinating vehicles by
automating traffic reports and allowing real-time
updates of route recommendation. The CRUM server
uses real-time GPS-based data taken from the vehicles
instead of the driver’s reports to give route recom-
mendations to CRUM vehicles. The CRUM model is
updated after each CRUM driver travels through the
network enabling the CRUM model to calculate flow
along the route using the travel time as measured by
the GPS. Using extensive simulations, and some
instances that are representative of a broad range of
traffic networks, we have demonstrated that the
CRUM-enabled MAS framework is able to establish
coordination among vehicles for choosing alterna-
tive routes.

While our partially decentralized approach has
been designed to handle environments requiring static
routing and specific time frames (e.g. morning or
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Figure 9. Plots showing Route Flow Convergence in the Braess network with Parameter settings G = [0.4, 0.6] and p = [0.0, 0.5,
0.9] where the orange curve represents flow on route SvD, green curve is flow on SwD, and blue curve is flow on route SvwD;
Figs. (@), (b) and (c) use linear latency function while Figs. (d), (e) and (f) use BPR latency function for the Braess network.

afternoon peaks) in which the demand per OD pair
remains nearly constant, we argue that our approach
could be extended to address the dynamic traffic
assignment problem. We have recently explored
(Shynkar et al., 2022) the use of meta-level control
mechanisms to handle dynamic traffic situations. In
this work, we use stacking of time windows where the
demand remains constant within a window but differs
across windows (as is commonly done in the litera-
ture) to capture the dynamics. To summarize, our
main findings in this article are as follows:

o The CRUM-enabled MAS framework achieves the
near SO traffic distribution by reducing congestion

and decreasing the average travel time in complex
networks with a range of PoAs.

e Average travel time improves linearly with the
fraction of CRUM vehicles when using the linear
model of latency function.

o Traffic distribution becomes more stable as the
number of CRUM vehicles increases.

e For the same network, the nonlinear model gener-
ates better traffic convergence to the SO than the
linear model.

In our future work, we plan to extend our work to
further investigate how network structure and latency

functions affect congestion in a transportation
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network. Also, we plan to augment the MAS frame-
work with learning capabilities to dynamically esti-
mate the flow of selfish drivers per edge which will
then serve as an input to the CRUM server.

Notes

1. Agent, driver and vehicle are used interchangeably
throughout the document

2. https://cvxopt.org/

https://github.com/DavidMei99/CRUMNetlists

4. We used 2 different values for G to study the effects of
a higher fraction (G=0.6) of the total number of
vehicles changing routes in each round versus a lower
fraction (G=0.4). In work discussed in (Hasan et al.,
2016), the authors performed experiments with a range
of G values when G was 0.5 or above as opposed to
when G was below 0.5. We were able to observe a
similar difference in performance of this cutoff of G at
G=0.5 by doing extensive experiments as well.
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