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Abstract

As cities across the globe continue to grow, traffic congestion has become globally ubiquitous with great economic and environ-
mental costs associated with it. The increasing prevalence of self-driving vehicles creates an opportunity to build smart, responsive
traffic infrastructure of the future. Such an infrastructure consisting of connected and autonomous vehicles and smart traffic lights
would have the potential to cope with congestion, weather phenomena and accidents, while maintaining safety and ensuring pri-
vacy of information. This paper introduces an approach to address the challenge of dynamically adjusting traffic to the changes
in the environment. We argue that multiagent meta-level control (MMLC) is an effective way to non-myopically determine how
and when this adaptation should be done. The approach highlights the role of dynamic meta-reasoning in a platooning scenario,
in which collaboration contributes to improved travel time for vehicles in the network as well as a positive environmental impact
as related to fuel consumption and emissions. Specifically, for the case study described in the paper, our MMLC-based approach
leads to approximately 44% decrease in travel time, 7% increase in average speed, a 32% decrease in fuel consumption and a 35%
drop in emissions. We also see performance advantages for a scaled-up mixed traffic simulation environment.
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1. Introduction

Global urbanization over the past decades has made traffic congestion ubiquitous resulting in economic and en-
vironmental costs in the hundreds of billions per year. There is a great need to leverage the increase in connected,
autonomous vehicles and smart traffic lights while planning the mixed traffic infrastructure of the future. This infras-
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tructure should be able to adapt to the dynamics and constraints of an open environment. We propose a multiagent
system-based approach that can effectively determine how and when this adaptation should be done. We highlight
the role of dynamic meta-reasoning in a multiagent system with respect to connected and autonomous planning and
coordination in the context of limited resources. A key component in this vision involves leveraging the potential
deployment of connected and autonomous vehicles (CAVs). These will change the way vehicles interact amongst
themselves, as well as the way the road infrastructure is organized. CAVs have a potential to mitigate congestion,
increase the throughput, facilitate the sharing of vehicles as well as autonomous mobility-on-demand(AMoD), and
increase safety while maintaining privacy for all users of the transportation network.

We argue that an important aspect of the introduction of CAVs (and the necessary connected infrastructure) is
that it facilitates the reorganization of the whole traffic system, so that (sub)parts can cope better with the complex
interactions that occur within the system. In this paper, apart from the physical urban network that is ubiquitous in the
traditional view, we also consider several other components that are networked to form a MAS. These components
include a network composed of the CAVs which is managed by a set of managers of CAVs (CAVMNGRs) and capable
of platoon formation. A platoon is a set of autonomous vehicles that is treated as a single unit. It resembles a train
structure in which the train cars form a linked entity (Sala and Soriguera, 2020). Recent works argue that platooning
contributes to increased efficiency of the traffic system (Heinovski and Dressler, 2018). Further, in keeping with the
current view of connected infrastructure, we envision networks between intersection managers (IMNGRs), where
intersections include traffic signals, as well as networks between link managers (LMNGRs) that manage links. Links
are important parts of the network, that have received less attention. Other actors that may be networked and managed
are mobility-on-demand and bike managers. The managers of the various networks could also be connected to form a
heterogeneous transportation network.

So far little has been investigated regarding how to coordinate the individual objectives of such actors, with few
exceptions. One is the body of research dealing with selfish routing in the context of traffic assignment. Selfish rout-
ing (Koutsoupias and Papadimitriou, 1999; Roughgarden and Tardos, 2002), where individual agents make uncoordi-
nated greedy routing decisions, is known not to produce a socially desirable outcome in transport and communication
networks. Another is the work on routing in the context of logistics. While important, these research threads mostly
do not consider other actors in an integrated way.

We propose using multiagent meta-level control (MMLC) (Cheng et al., 2013; Gordon et al., 2008; Yamane and
Ishida, 2006) as a necessary feature for complex agents to operate, communicate and coordinate in these heavily
networked future transportation environments. These environments will inherently be more open and dynamic, with
more players and disrupting technologies. MMLC is the process that facilitates an agent network (e.g., CAVMNGR or
IMNGR network or network of networks) to have a decentralized meta-level multiagent policy, where the progression
of what deliberations the agents should do, and when, is choreographed carefully and includes branches to account
for what could happen as deliberation plays out. For example, suppose multiple intersections belonging to one IM-
NGR have been shut down due to a water main break. The IMNGR agent decides to devote significant resources to
coordinate with its two neighboring IMNGRs and reorganize the routing of traffic. However, if those neighbors have
allocated little resources for this coordination, the IMNGR agent then would waste resources trying to coordinate with
an unwilling partner. It is thus important to coordinate the partners at the meta-level to ensure network reorganization.

While our long-term goal is to apply distributed MMLC to the traffic reorganization problem, for the purposes of
this paper we investigate centralized MMLC and discuss its advantages and disadvantages. Our proposed hypothesis
is that in dynamic traffic contexts, where flow is interrupted (due to the weather conditions, volume of vehicles change,
accidents, etc.), MMLC and platooning allow for efficient re-organization of the various elements within the traffic
system that lead to performance advantages with respect to speed, fuel usage and emissions. We will first describe
related work in connected vehicles and future of transportation networks. We then describe our approach that uses
MMLC and platooning and provide an evaluation in the context of a motivating example as well as for a scaled-up
mixed traffic network. We finally discuss the conclusions and future work.
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bInstituto de Informática, UFRGS, Caixa Postal 15064, 91.501-970 Porto Alegre, Brazil

Abstract

As cities across the globe continue to grow, traffic congestion has become globally ubiquitous with great economic and environ-
mental costs associated with it. The increasing prevalence of self-driving vehicles creates an opportunity to build smart, responsive
traffic infrastructure of the future. Such an infrastructure consisting of connected and autonomous vehicles and smart traffic lights
would have the potential to cope with congestion, weather phenomena and accidents, while maintaining safety and ensuring pri-
vacy of information. This paper introduces an approach to address the challenge of dynamically adjusting traffic to the changes
in the environment. We argue that multiagent meta-level control (MMLC) is an effective way to non-myopically determine how
and when this adaptation should be done. The approach highlights the role of dynamic meta-reasoning in a platooning scenario,
in which collaboration contributes to improved travel time for vehicles in the network as well as a positive environmental impact
as related to fuel consumption and emissions. Specifically, for the case study described in the paper, our MMLC-based approach
leads to approximately 44% decrease in travel time, 7% increase in average speed, a 32% decrease in fuel consumption and a 35%
drop in emissions. We also see performance advantages for a scaled-up mixed traffic simulation environment.

© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 24th Euro Working Group on Transportation Meeting.

Keywords: Intelligent Transportation Systems; Smart Cities; Multiagent Systems; Meta-Level Reasoning

1. Introduction

Global urbanization over the past decades has made traffic congestion ubiquitous resulting in economic and en-
vironmental costs in the hundreds of billions per year. There is a great need to leverage the increase in connected,
autonomous vehicles and smart traffic lights while planning the mixed traffic infrastructure of the future. This infras-

∗ Anita Raja. Tel.: +1-212-650-5031.
E-mail address: anita.raja@hunter.cuny.edu (Anita Raja).

E-mail address: anita.raja@hunter.cuny.edu

2352-1465© 2021 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Peer-review under responsibility of the scientific committee of the 24th Euro Working Group on Transportation Meeting.

Available online at www.sciencedirect.com

Transportation Research Procedia 00 (2021) 000–000 www.elsevier.com/locate/procedia

24th Euro Working Group on Transportation Meeting, EWGT 2021, 8-10 September 2021,
Aveiro, Portugal

Multiagent Meta-level Control for Adaptive Traffic Systems: A Case
Study

Yaroslava Shynkara, Anita Rajaa,∗, Ana L. C. Bazzanb, Marin Marinova

aHunter College, City University Of New York, NY, NY, USA
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Fig. 1. A snapshot of interactions among CAV and link managers in our system

2. Related Work

The literature on the various aspects related to future of traffic and transportation systems is vast. While a systematic
survey is thus outside of scope, we briefly shed light on works that relate to multiagent systems (MAS). We show that,
within the MAS literature, there is a gap motivating the need for a framework capable of meta-level decision making.

Reservation-based control of intersections were addressed by (Dresner and Stone, 2004; Vasirani and Ossowski,
2009) (and their extensions). In (Au et al., 2011), a management policy is proposed, that puts the request messages on
hold and then processes several requests at once, in order to avoid starvation at secondary roads. With respect to the
use of navigation and traffic apps, in (Hasan et al., 2016), the authors have investigated traffic coordination algorithms
for connected vehicles. Klügl and Bazzan (2021) propose the use of an app for allowing agents who share origins
and/or destinations to communicate their rewards (travel time) in order to gain more information and accelerate the
learning process. However, none of these works deal with decision-making at the meta-level.

CAVs are key components in our approach. In the interests of space, we refer the reader to Mahmassani’s
overview(Mahmassani, 2016) on the implications of CAVs for traffic and urban systems, as well as for a discussion
on related works. This focuses on other important issues such as sensitivity related to market penetration of CAVs,
mixed traffic performance, operational control design, and performance of the overall traffic system, among others.
It also introduces an approach that focuses on flow and operational aspects of CAVs. In this sense, it has a different
purpose than ours. We focus on the interactions among the various heterogeneous components of the infrastructure
that underly the CAVs, besides the organization of the CAVs themselves (as, e.g., platooning). Recent surveys point
out that interaction and organizational issues are not receiving much attention in current work. For instance, Khaya-
tian et al. (2020) focus mainly on intersection management, communications, and safety and robustness issues, not on
reorganization of the network via decision-making at vehicle, platoon, intersection or other aggregated levels.

3. Motivating Example and Approach

We describe a hierarchical MAS approach for future transportation networks. It is characterized by a supervisory
framework for organizational control to coordinate the vehicular network while coping with congestion, weather
phenomenon and accidents. Each acting agent consists of two levels of reasoning (Cheng et al., 2013). The higher level
of control called meta-level control, can reason about alternate methods for deliberation (computation) and determines
parameters for whether, when and how to (re)organize the network and coordinate with other agents. Specifically, the
meta-level control reasoning component is addressing questions such as: whether and when to reorganize the network.
The second level of control is the deliberative level which is more computationally intensive and includes algorithms
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for coordination, platooning, routing, signalling, etc. It determines the actions to be taken at the ground or domain
level by the agent’s effectors.

Figure 1 describes a portion of a road network with a set of CAVs traveling on it. It is assumed that each CAV has
a valid route from an origin to a destination. The CAVMNGRs network consists of multiple CAV MNGRi agents, that
cover non-overlapping areas. Two CAV MNGR′i s are neighbors if they share boundaries of coverage. For the sake of
illustration, consider that at a given time a platoon of two vehicles (platoon P1 in the figure) is heading to intersection
A (covered by CAV MNGRA) and plans to turn south at intersection B. In the meantime, a platoon of five vehicles
(platoon P2 in the figure) is passing through intersection B (covered by CAV MNGRB) planning to head west. Suppose
LMNGR4 informs CAV MNGR4 that link L4 is blocked south-bound. Given this information about L4, the metalevel
reasoning questions to be handled by CAV MNGRB are whether the platoon P1 should continue as is or be rerouted
as a whole unit, or should it be disbanded and have all its vehicles redirected on a case-by-case basis using different
routes to mitigate the congestion. For instance, the MMLC and its associated deliberative control could determine that
platoon P1 should turn south at intersection A instead of proceeding east as planned. This is determined by comparing
the utility of alternative routes and picking the one that has the greatest expected utility.

Also the LMNGR to the top left is made aware by the meta-level communication that platoon P2 is heading its
way. It will coordinate with IMNGR to its west about this platoon. The LMNGR and IMNGR will then coordinate to
determine whether platoon P2 should disband or stay together based on its expected utility values and then update the
meta-level control with their decision. The deliberative-level reasoning involves applying the appropriate platooning
strategy. While P2 is not directly affected by the closure of L4, there are secondary effects if the traffic interruption is
not addressed. Without MMLC all vehicles intending to turn into lane 4 would get stuck and that would cause traffic
congestion at intersection B. This would affect P2’s journey through intersection B.

In this paper, we introduce meta-level control and platooning in CAVs to implement the above described meta-
level reorganization that facilitates dynamic rerouting to handle traffic interruption events. We study their effect on
a number of performance metrics of the traffic network. In our experiments, we show that platoons and non-myopic
MMLC decisions to handle dynamic changes in the environment such as street shutdowns or accidents lead to a
performance advantage.

Traffic Interruption Events: We consider three types of traffic interruption (TIE) events: weather, volume-change
and accidents. Each event has three weights associated with it to reflect its priority: Traffic Interruption Event (TIE)
weight (T IEw) which indicates the priority of one event type over another; Deadline weight (Dw), which indicates
the urgency of the TIE deadline; and Severity weight (S w), which indicates the impact of the TIE on the network
performance. For instance, a car accident that blocks an intersection is more severe than one that closes a small part
of one lane. S w can take on the value ”low”, ”medium” or ”high”. In this paper, our MMLC approach determines how
the TIEs should be handled by leveraging these weights.

Platooning: Cooperative Adaptive Cruise Control (Heinovski and Dressler, 2018) is a set of strategies (protocols)
that guarantee that by forming a platoon vehicles can minimize their inter-vehicle distance and hence their speed
differences. Cooperative Adaptive Cruise Control (CACC) (Wang et al., 2019) is an extension of ACC. In our work
it is assumed that only CAVs can form a platoon since they are capable of sharing data (through V2X) and have the
capacities that are essential for a platoon formation. In the simulation environment, if two vehicles have a similar
route (as determined by the CAVMNGRs at every edge), then each vehicle is enabled for platoon formation and the
merging maneuver is performed.

Multiagent Meta-level Control:The deliberative-level actions that Multiagent Meta-level Control (MMLC) has
to choose from are: (a) reroute the vehicles; (b) reroute platoons; and (c) disband the platoon and reroute the vehicles
that belonged to it. Each MMLC state captures information about the current time, contents of event priority queue
(EPQ), an event trigger list, average travel time so far, and the MMLC decision from the previous time step. The EPQ
is the ordering of events (TIEs) that could interrupt traffic flow including weather, volume change and accident events.
MMLC determines which events need to be addressed first. We assume the T IEw is a three tuple for prioritizing
weather, volume-change and accident respectively. The default T IEw = [0.2, 0.5, 1.0] indicates accidents have highest
priority with weight 1.0 followed by volume change with weight 0.5 and finally weather with weight 0.2 ; the S w is a
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reorganization of the network via decision-making at vehicle, platoon, intersection or other aggregated levels.

3. Motivating Example and Approach

We describe a hierarchical MAS approach for future transportation networks. It is characterized by a supervisory
framework for organizational control to coordinate the vehicular network while coping with congestion, weather
phenomenon and accidents. Each acting agent consists of two levels of reasoning (Cheng et al., 2013). The higher level
of control called meta-level control, can reason about alternate methods for deliberation (computation) and determines
parameters for whether, when and how to (re)organize the network and coordinate with other agents. Specifically, the
meta-level control reasoning component is addressing questions such as: whether and when to reorganize the network.
The second level of control is the deliberative level which is more computationally intensive and includes algorithms
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for coordination, platooning, routing, signalling, etc. It determines the actions to be taken at the ground or domain
level by the agent’s effectors.

Figure 1 describes a portion of a road network with a set of CAVs traveling on it. It is assumed that each CAV has
a valid route from an origin to a destination. The CAVMNGRs network consists of multiple CAV MNGRi agents, that
cover non-overlapping areas. Two CAV MNGR′i s are neighbors if they share boundaries of coverage. For the sake of
illustration, consider that at a given time a platoon of two vehicles (platoon P1 in the figure) is heading to intersection
A (covered by CAV MNGRA) and plans to turn south at intersection B. In the meantime, a platoon of five vehicles
(platoon P2 in the figure) is passing through intersection B (covered by CAV MNGRB) planning to head west. Suppose
LMNGR4 informs CAV MNGR4 that link L4 is blocked south-bound. Given this information about L4, the metalevel
reasoning questions to be handled by CAV MNGRB are whether the platoon P1 should continue as is or be rerouted
as a whole unit, or should it be disbanded and have all its vehicles redirected on a case-by-case basis using different
routes to mitigate the congestion. For instance, the MMLC and its associated deliberative control could determine that
platoon P1 should turn south at intersection A instead of proceeding east as planned. This is determined by comparing
the utility of alternative routes and picking the one that has the greatest expected utility.

Also the LMNGR to the top left is made aware by the meta-level communication that platoon P2 is heading its
way. It will coordinate with IMNGR to its west about this platoon. The LMNGR and IMNGR will then coordinate to
determine whether platoon P2 should disband or stay together based on its expected utility values and then update the
meta-level control with their decision. The deliberative-level reasoning involves applying the appropriate platooning
strategy. While P2 is not directly affected by the closure of L4, there are secondary effects if the traffic interruption is
not addressed. Without MMLC all vehicles intending to turn into lane 4 would get stuck and that would cause traffic
congestion at intersection B. This would affect P2’s journey through intersection B.

In this paper, we introduce meta-level control and platooning in CAVs to implement the above described meta-
level reorganization that facilitates dynamic rerouting to handle traffic interruption events. We study their effect on
a number of performance metrics of the traffic network. In our experiments, we show that platoons and non-myopic
MMLC decisions to handle dynamic changes in the environment such as street shutdowns or accidents lead to a
performance advantage.

Traffic Interruption Events: We consider three types of traffic interruption (TIE) events: weather, volume-change
and accidents. Each event has three weights associated with it to reflect its priority: Traffic Interruption Event (TIE)
weight (T IEw) which indicates the priority of one event type over another; Deadline weight (Dw), which indicates
the urgency of the TIE deadline; and Severity weight (S w), which indicates the impact of the TIE on the network
performance. For instance, a car accident that blocks an intersection is more severe than one that closes a small part
of one lane. S w can take on the value ”low”, ”medium” or ”high”. In this paper, our MMLC approach determines how
the TIEs should be handled by leveraging these weights.

Platooning: Cooperative Adaptive Cruise Control (Heinovski and Dressler, 2018) is a set of strategies (protocols)
that guarantee that by forming a platoon vehicles can minimize their inter-vehicle distance and hence their speed
differences. Cooperative Adaptive Cruise Control (CACC) (Wang et al., 2019) is an extension of ACC. In our work
it is assumed that only CAVs can form a platoon since they are capable of sharing data (through V2X) and have the
capacities that are essential for a platoon formation. In the simulation environment, if two vehicles have a similar
route (as determined by the CAVMNGRs at every edge), then each vehicle is enabled for platoon formation and the
merging maneuver is performed.

Multiagent Meta-level Control:The deliberative-level actions that Multiagent Meta-level Control (MMLC) has
to choose from are: (a) reroute the vehicles; (b) reroute platoons; and (c) disband the platoon and reroute the vehicles
that belonged to it. Each MMLC state captures information about the current time, contents of event priority queue
(EPQ), an event trigger list, average travel time so far, and the MMLC decision from the previous time step. The EPQ
is the ordering of events (TIEs) that could interrupt traffic flow including weather, volume change and accident events.
MMLC determines which events need to be addressed first. We assume the T IEw is a three tuple for prioritizing
weather, volume-change and accident respectively. The default T IEw = [0.2, 0.5, 1.0] indicates accidents have highest
priority with weight 1.0 followed by volume change with weight 0.5 and finally weather with weight 0.2 ; the S w is a
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tuple for low, medium and high levels of severity respectively with default values for S w = [0.2, 0.4, 0.8]; the DLw is a
tuple for relaxed and tight deadlines with default values for DLw = [0.25, 0.75]. Events are ordered in the EPQ using
the following intuitive weighting formula: T IEw ∗ (DLw + S w).

We introduce a deterministic MMLC algorithm that uses the above weighting heuristic, which is manually set to
enforce the following intuitive rules: accidents are given higher priority (higher TIE weights) over weather and volume
change; if two events in the queue are of the same type, the one with the higher severity is prioritized; if two events
in the queue have the same severity, then one with a tighter deadline is prioritized; if MMLC is not activated, instead
of being rerouted, the vehicles simply form a queue at the junction next to the blocked edge until the event clears;
if MMLC is activated, then the possible action choices based on system state are (a) reroute the vehicles; (b) reroute
platoons and (c) disband the platoons and reroute the vehicles that belonged to the platoon.

In this MMLC algorithm, the EPQ accounts for long-term effectiveness of reorganization of the network. Instead of
taking myopic/greedy actions to handle incoming events, contextual information, including information about other
events in the queue, is used in making the action choice. This enables MMLC decisions to be non-myopic.

4. Empirical Evaluation

Control Strategies: We evaluate the effectiveness of deliberative-level platooning and the higher level MMLC
in handling the consequences of traffic interruption events by comparing four control strategies in a variety of envi-
ronments. The four strategies are: Strategy 1 (S1) where vehicles in the network have no option for platooning or
MMLC and the vehicles individually respond to TIEs as they occur with no planning; Strategy 2 (S2) where vehi-
cles in the network can perform maneuvers such as merge, disband, or leave a platoon at the deliberative level, but
have no MMLC to handle the dynamic changes; Strategy 3 (S3) where MMLC is activated at the meta-level for
vehicles but there is no deliberative control option for platoon formation; Strategy 4 (S4) where both MMLC and
deliberative-level platooning are available as control options for CAVs in the network.

Microscopic Simulator and Evaluation Metrics: All experiments described in this paper use SUMO (Simulation
of Urban MObility) (Lopez et al., 2018), an open source, microscopic traffic simulator. For our first set of experiments,
the example depicted in Figure 1 was modelled in SUMO. We simulate and track 10 CAVs with routes that were com-
puted with respect to their origins and destinations as well as their departure times. For our simulation, we compared
the efficiency of MMLC and platooning using two car-following models available in SUMO (namely IDM and Krauss
(Treiber, 2013)), taking into account their specific parameters. The Krauss model (also known as the stochastic ver-
sion of Gipps’ model) considers realistic parameters that capture close-to-accurate microscopic behaviour of a vehicle
in highway traffic. It is collision-free since accidents are minimized due to the safe speed parameter. The Intelligent
Driver Model (IDM) is another popular model that generates better macroscopic traffic network data for evaluation
purposes. In comparison to the Krauss model, IDM computes a more realistic travel time for a vehicle to cross an
intersection. While it does not capture the leader vehicle’s speed, it keeps track of the gap between the vehicles. IDM
is more suitable for CAVs because it is able to handle small gaps between vehicles and also produces realistic acceler-
ation results. This enables it to capture more accidents than Krauss and track the fuel consumption and CO2 emissions.
IDM also makes the SUMO emissions model more suitable for microscopic situations.

When using platoon formation strategies, the default settings of our models are modified to simulate the behaviour
of merging of autonomous vehicles into a platoon, i.e., CAVs in a platoon have the minimum gap set to zero, minimum
time headway of 0.05, the speed is the current speed of the platoon leader vehicle. When two vehicles on the same
lane perform a merge into a platoon maneuver, the routing is modeled such that the follower always has to accelerate
in order to form the platoon with the leader.

Our first goal is to determine the usefulness of control strategies that use MMLC and platooning independently, and
also when they are combined. We measure the average speed and average time to destination for the vehicles in the
network. Our second goal is to evaluate the effect of the strategies on vehicle emissions. The SUMO emissions model
captures specific pollutants emitted by the vehicle including the amounts of Carbonmonoxide (CO), a known toxic
substance; Carbondioxide (CO2), a greenhouse gas; Hydrocarbons (HC) that lead to smog and ground-level ozone;
particulate matter (PMx) that are known to cause cancer; and Nitrousoxide (NOx) that is emitted in milligrams by the
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vehicles on a lane/edge, creates smog and contributes to acid rains. The emission values presented are the average for
the network (averaged based on data per lane).

Mixed traffic networks consist of CAVs and manually-driven non-autonomous vehicles. Therefore, our third goal
is to analyze the changes in performance as a function of the ratio of CAVs equipped with MMLC and Platooning in
a mixed traffic network. For this purpose, we employ various metrics as discussed in the next section.

Empirical Results In these first set of experiments, we explore the performance (Table 1) and emissions (Table 2)
implications of the four above-mentioned strategies when lane L4 in the simple motivating example (Figure 1) is shut
down due to an accident. When using S1 and S2, where there is no MMLC and thus a lack of coordination among
the agents about the TIE, it is observed that there is traffic backup in the lanes between intersection A and B and the
vehicles simply wait for L4 to be open again. However with MMLC (S3 and S4), the ability to coordinate leads to the
routes involving the blocked link L4 to be replaced by the MMLC recommended routes that address the lane closure
and limit the traffic congestion.

AvSpd(m/s) AvTT(s) Fuel Usage (ml/s)
Col. #→ 1 2 3 4 5 6
Sce. # ↓ Krauss IDM Krauss IDM Krauss IDM

S1 11.64 11.68 35.05 34.81 69.42 59.56
S2 11.81 11.8 34.66 34.60 70.2 59.38
S3 12.73 12.73 19.25 19.2 46.71 37.58
S4 12.91 12.88 18.94 18.97 47.16 36.91

Table 1. Comparison of average vehicle speed, average travel time and fuel consumption under various control strategies (S1–S4) using the Krauss
and IDM car-following models in the example described in Figure 1. The strategies are S1: No-MMLC and No-Platooning; S2: No-MMLC with
Platooning; S3: MMLC only with No-Platooning; S4: MMLC with Platooning.

CO(mg/s) CO2(mg/s) NOx (mg/s) HC(mg/s) PMx(mg/s)
Col. #→ 1 2 3 4 5 6 7 8 9 10
Sce. # ↓ Krauss IDM Krauss IDM Krauss IDM Krauss IDM Krauss IDM

S1 4813.04 4312.93 161487.88 138550.53 67.77 56.55 25.69 22.58 3.18 2.53
S2 4724.77 4334.90 163306.23 138135.75 67.06 56.49 25.11 22.67 3.04 2.54
S3 1415.21 927.74 108670.57 87413.68 43.41 32.74 8.98 5.93 1.83 1.2
S4 1233.62 900.9 109704.47 85876.93 42.31 32.21 7.96 5.78 1.67 1.19

Table 2. Comparison of emissions averaged over the network under various control strategies (S1–S4) using the Krauss and IDM car following
models in the example described in Figure 1. The strategies are S1: No-MMLC and No-Platooning; S2: No-MMLC with Platooning; S3: MMLC
only with No-Platooning; S4: MMLC with Platooning.

Columns 1 through 4 in Table 1 show the comparison of the average speed and average travel time for each of the
four strategies and two car following models: Krauss and IDM. For instance, in column 1 we see that using the Krauss
model, the average speed using strategy S3 is at least 9.36% and 10.91% higher or more than S1 and S2 respectively.
Overall, we note that for both the Krauss and IDM models, strategies 3 (S3) and 4 (S4) have better performance (at
least 7.79% increase in average speed and 44.46% decrease in average travel time) than strategies 1 (S1) and 2 (S2).
These results show that using MMLC (S3 and S4) has a performance advantage compared to not using MMLC (S1 and
S2) indicating that the ability of MMLC to adapt to changes and dynamically reroute vehicles leads to less congestion
even in the simple example in Figure 1. We observe that platooning (S2 and S4) has a performance advantage (about
1-2%) compared to not using platooning (S1 and S3) respectively on almost all measures. S4 has slightly better
performance than S3 even though MMLC is available in both because S4 also employs platooning. This indicates that
the meta-level recommendation to reroute the platoon P1 at intersection A due to the closure of intersection B leads
to the best performance with regards to average speed and lower average travel time in the simple example network.

We also observe in Columns 5 and 6 in Table 1 that fuel usage decreases significantly (by about 32% at least) with
the use of MMLC and platooning regardless of car following model. This is because of the reduced aerodynamic drag
since the minimum gap between the vehicles is very small (it is set to 0) under platoon formation settings. Finally,
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tuple for low, medium and high levels of severity respectively with default values for S w = [0.2, 0.4, 0.8]; the DLw is a
tuple for relaxed and tight deadlines with default values for DLw = [0.25, 0.75]. Events are ordered in the EPQ using
the following intuitive weighting formula: T IEw ∗ (DLw + S w).

We introduce a deterministic MMLC algorithm that uses the above weighting heuristic, which is manually set to
enforce the following intuitive rules: accidents are given higher priority (higher TIE weights) over weather and volume
change; if two events in the queue are of the same type, the one with the higher severity is prioritized; if two events
in the queue have the same severity, then one with a tighter deadline is prioritized; if MMLC is not activated, instead
of being rerouted, the vehicles simply form a queue at the junction next to the blocked edge until the event clears;
if MMLC is activated, then the possible action choices based on system state are (a) reroute the vehicles; (b) reroute
platoons and (c) disband the platoons and reroute the vehicles that belonged to the platoon.

In this MMLC algorithm, the EPQ accounts for long-term effectiveness of reorganization of the network. Instead of
taking myopic/greedy actions to handle incoming events, contextual information, including information about other
events in the queue, is used in making the action choice. This enables MMLC decisions to be non-myopic.

4. Empirical Evaluation

Control Strategies: We evaluate the effectiveness of deliberative-level platooning and the higher level MMLC
in handling the consequences of traffic interruption events by comparing four control strategies in a variety of envi-
ronments. The four strategies are: Strategy 1 (S1) where vehicles in the network have no option for platooning or
MMLC and the vehicles individually respond to TIEs as they occur with no planning; Strategy 2 (S2) where vehi-
cles in the network can perform maneuvers such as merge, disband, or leave a platoon at the deliberative level, but
have no MMLC to handle the dynamic changes; Strategy 3 (S3) where MMLC is activated at the meta-level for
vehicles but there is no deliberative control option for platoon formation; Strategy 4 (S4) where both MMLC and
deliberative-level platooning are available as control options for CAVs in the network.

Microscopic Simulator and Evaluation Metrics: All experiments described in this paper use SUMO (Simulation
of Urban MObility) (Lopez et al., 2018), an open source, microscopic traffic simulator. For our first set of experiments,
the example depicted in Figure 1 was modelled in SUMO. We simulate and track 10 CAVs with routes that were com-
puted with respect to their origins and destinations as well as their departure times. For our simulation, we compared
the efficiency of MMLC and platooning using two car-following models available in SUMO (namely IDM and Krauss
(Treiber, 2013)), taking into account their specific parameters. The Krauss model (also known as the stochastic ver-
sion of Gipps’ model) considers realistic parameters that capture close-to-accurate microscopic behaviour of a vehicle
in highway traffic. It is collision-free since accidents are minimized due to the safe speed parameter. The Intelligent
Driver Model (IDM) is another popular model that generates better macroscopic traffic network data for evaluation
purposes. In comparison to the Krauss model, IDM computes a more realistic travel time for a vehicle to cross an
intersection. While it does not capture the leader vehicle’s speed, it keeps track of the gap between the vehicles. IDM
is more suitable for CAVs because it is able to handle small gaps between vehicles and also produces realistic acceler-
ation results. This enables it to capture more accidents than Krauss and track the fuel consumption and CO2 emissions.
IDM also makes the SUMO emissions model more suitable for microscopic situations.

When using platoon formation strategies, the default settings of our models are modified to simulate the behaviour
of merging of autonomous vehicles into a platoon, i.e., CAVs in a platoon have the minimum gap set to zero, minimum
time headway of 0.05, the speed is the current speed of the platoon leader vehicle. When two vehicles on the same
lane perform a merge into a platoon maneuver, the routing is modeled such that the follower always has to accelerate
in order to form the platoon with the leader.

Our first goal is to determine the usefulness of control strategies that use MMLC and platooning independently, and
also when they are combined. We measure the average speed and average time to destination for the vehicles in the
network. Our second goal is to evaluate the effect of the strategies on vehicle emissions. The SUMO emissions model
captures specific pollutants emitted by the vehicle including the amounts of Carbonmonoxide (CO), a known toxic
substance; Carbondioxide (CO2), a greenhouse gas; Hydrocarbons (HC) that lead to smog and ground-level ozone;
particulate matter (PMx) that are known to cause cancer; and Nitrousoxide (NOx) that is emitted in milligrams by the
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vehicles on a lane/edge, creates smog and contributes to acid rains. The emission values presented are the average for
the network (averaged based on data per lane).

Mixed traffic networks consist of CAVs and manually-driven non-autonomous vehicles. Therefore, our third goal
is to analyze the changes in performance as a function of the ratio of CAVs equipped with MMLC and Platooning in
a mixed traffic network. For this purpose, we employ various metrics as discussed in the next section.

Empirical Results In these first set of experiments, we explore the performance (Table 1) and emissions (Table 2)
implications of the four above-mentioned strategies when lane L4 in the simple motivating example (Figure 1) is shut
down due to an accident. When using S1 and S2, where there is no MMLC and thus a lack of coordination among
the agents about the TIE, it is observed that there is traffic backup in the lanes between intersection A and B and the
vehicles simply wait for L4 to be open again. However with MMLC (S3 and S4), the ability to coordinate leads to the
routes involving the blocked link L4 to be replaced by the MMLC recommended routes that address the lane closure
and limit the traffic congestion.

AvSpd(m/s) AvTT(s) Fuel Usage (ml/s)
Col. #→ 1 2 3 4 5 6
Sce. # ↓ Krauss IDM Krauss IDM Krauss IDM

S1 11.64 11.68 35.05 34.81 69.42 59.56
S2 11.81 11.8 34.66 34.60 70.2 59.38
S3 12.73 12.73 19.25 19.2 46.71 37.58
S4 12.91 12.88 18.94 18.97 47.16 36.91

Table 1. Comparison of average vehicle speed, average travel time and fuel consumption under various control strategies (S1–S4) using the Krauss
and IDM car-following models in the example described in Figure 1. The strategies are S1: No-MMLC and No-Platooning; S2: No-MMLC with
Platooning; S3: MMLC only with No-Platooning; S4: MMLC with Platooning.

CO(mg/s) CO2(mg/s) NOx (mg/s) HC(mg/s) PMx(mg/s)
Col. #→ 1 2 3 4 5 6 7 8 9 10
Sce. # ↓ Krauss IDM Krauss IDM Krauss IDM Krauss IDM Krauss IDM

S1 4813.04 4312.93 161487.88 138550.53 67.77 56.55 25.69 22.58 3.18 2.53
S2 4724.77 4334.90 163306.23 138135.75 67.06 56.49 25.11 22.67 3.04 2.54
S3 1415.21 927.74 108670.57 87413.68 43.41 32.74 8.98 5.93 1.83 1.2
S4 1233.62 900.9 109704.47 85876.93 42.31 32.21 7.96 5.78 1.67 1.19

Table 2. Comparison of emissions averaged over the network under various control strategies (S1–S4) using the Krauss and IDM car following
models in the example described in Figure 1. The strategies are S1: No-MMLC and No-Platooning; S2: No-MMLC with Platooning; S3: MMLC
only with No-Platooning; S4: MMLC with Platooning.

Columns 1 through 4 in Table 1 show the comparison of the average speed and average travel time for each of the
four strategies and two car following models: Krauss and IDM. For instance, in column 1 we see that using the Krauss
model, the average speed using strategy S3 is at least 9.36% and 10.91% higher or more than S1 and S2 respectively.
Overall, we note that for both the Krauss and IDM models, strategies 3 (S3) and 4 (S4) have better performance (at
least 7.79% increase in average speed and 44.46% decrease in average travel time) than strategies 1 (S1) and 2 (S2).
These results show that using MMLC (S3 and S4) has a performance advantage compared to not using MMLC (S1 and
S2) indicating that the ability of MMLC to adapt to changes and dynamically reroute vehicles leads to less congestion
even in the simple example in Figure 1. We observe that platooning (S2 and S4) has a performance advantage (about
1-2%) compared to not using platooning (S1 and S3) respectively on almost all measures. S4 has slightly better
performance than S3 even though MMLC is available in both because S4 also employs platooning. This indicates that
the meta-level recommendation to reroute the platoon P1 at intersection A due to the closure of intersection B leads
to the best performance with regards to average speed and lower average travel time in the simple example network.

We also observe in Columns 5 and 6 in Table 1 that fuel usage decreases significantly (by about 32% at least) with
the use of MMLC and platooning regardless of car following model. This is because of the reduced aerodynamic drag
since the minimum gap between the vehicles is very small (it is set to 0) under platoon formation settings. Finally,
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we note that it is computationally less expensive to recompute a route for all vehicles within a platoon using S2 and
S4 (30 invocations of the Dijkstra rerouting algorithm within SUMO) than to recompute routes for each individual
vehicles as in S1 and S3 (80 invocations of the rerouting algorithm).

Table 2 shows that, in general, the average emissions of CO, NOx, HC and PMx for the network reduce at least by
about 70%, 35%, 64% and 39% respectively with the use of platooning and MMLC in S4 compared to S1 and S2. This
is because with MMLC, fewer vehicles are stopped or slowed down when there is an unexpected interruption of traffic
flow. Also with platooning leading to increased average speed, most emission gases are reduced. Our results for CO2
in the Krauss model show a slight increase in emissions for S4 over S3. We argue that this captures the disadvantage
of exclusively using the acceleration feature during platooning in an environment where all CAVs have their settings
changed during the platooning, as it is the case in using S4 on the motivating example environment. The results for
IDM model show that platooning can reduce the fuel consumption as well as the CO2 emissions. This is due to the
fact that IDM has parameters similar to the settings of vehicles under the platoon formation strategies.

AvSpd(m/s) AvTT(s) Fuel Usage (ml/s)
Col. #→ 1 2 3 4 5 6

CAVs % ↓ Krauss IDM Krauss IDM Krauss IDM
0 12.14 11.77 40.58 43.36 3038.06 2379.53

0.25 12.38 12.03 39.66 41.08 2813.63 2178.97
0.5 12.53 12.04 39.21 41.29 2647.82 2226.83

0.75 12.71 12.14 38.61 41.07 2472.50 2249.64
1.0 12.87 12.54 38.12 39.2 2271.07 2086.03

Table 3. Comparison of average vehicle speed, travel time and fuel usage for S4 with MMLC and Platooning using the Krauss and IDM car
following models when varying fraction of CAVs (left most column CAVs %) equipped with MMLC and platooning in the mixed traffic network

CO(mg/s) CO2(mg/s) NOx (mg/s) HC(mg/s) PMx(mg/s)
Col. #→ 1 2 3 4 5 6 7 8 9 10

CAVs % ↓ Krauss IDM Krauss IDM Krauss IDM Krauss IDM Krauss IDM
0 92375.84 92642.49 7067583.43 5535542.28 2779.76 2087.78 584.25 534.92 112.99 77.04

0.25 77942.21 63624.51 6545741.25 5068994.26 2535.93 1871.70 502.84 390.87 100.06 65.44
0.5 69116.71 69226.46 6159747.78 5180336.87 2352.77 1921.9 450.49 418.13 90.17 68.25

0.75 58651.23 70428.03 5751894.08 5233382.17 2147.07 1941.80 387.63 423.92 78.24 69.15
1.0 49760.34 51474.34 5283261.4 4852791.95 1920.28 1773.47 330.43 327.04 65.73 60.91

Table 4. Comparison of emissions for S4 with MMLC and Platooning using the using the Krauss and IDM car following models when varying
fraction of CAVs (left most column CAVs %) equipped with MMLC and platooning in the mixed traffic network.

In Table 3, we evaluate the effectiveness and efficiency of MMLC by scaling up the network to a mixed traffic
environment using strategy S4 consisting of 400 vehicles and simulated for 4750 seconds. To simulate the mixed-
traffic conditions, we generated random trips for CAVs and non-CAVs. As before, when using S4 all the routes that
involved the blocked link L4 are replaced by the MMLC recommended routes.

We note that only CAVs and CAVMNGRs in the mixed traffic environment are equipped with MMLC-based
coordination among agents as well as platooning. Consequently, we see that as the ratio of CAVs increases to 1.0, the
performance with respect to average speed increases by 2 to 6% while average travel time decreases upto 6% for the
Krauss model and 9% for the IDM model. The fuel consumption monotonically decreases to about 25% reduction for
the Krauss model and to about 12% reduction for the IDM model with the CAV ratio set to 1.0. Further, in Table 4,
we see that the various emissions also decrease between 7% and 45% with increasing ratio of CAVs. This indicates
the advantage of MMLC-enhanced CAVs in larger scale mixed traffic environments.

5. Conclusion

As CAVs become more prevalent, there is an opportunity to alleviate congestion by building smart traffic infras-
tructure of the future. Research on multiagent systems has the potential to contribute to this agenda. In this work, we
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argue that in open and dynamic environments, multiagent meta-level control is an effective way to determine when
the adaptation process should be performed and how much effort should be invested in adaptation as opposed to
continuing with the current action plan.

We have outlined some issues that arise in the context of an urban network – where heterogeneous actors interact –
and a potential solution approach. This solution is characterized by a supervisory framework for organizational control
to coordinate a vehicular network, while coping with traffic interruption events. Each acting agent consists of two
levels of reasoning, one of them being a meta-level control that can reason about alternate methods for deliberation.

We have shown the advantages of our approach by means of a motivating example, in which there are CAVs
that are heading to a lane that is blocked. We compared the performance of our approach, which has the ability to
choreograph coordination, to situations where such coordination is not available. In a microscopic simulation for the
case study presented in the paper, we were able to show that coordination led to about a 44% decrease in travel time,
7% increase in average speed, a 32% decrease in fuel consumption and about a 35% drop in emissions. Further, we
have evaluated the efficiency of our approach when there is mixed traffic. Due to the fact that our approach is able to
deal with rerouting (also within platoons), the advantage of having as many CAVs as possible becomes evident.

Our long term goal is to extend the investigation to other scenarios that involve coordination of further components
(bikes, pedestrians, mobility-on-demand vehicles, traffic signals), which would require automated learning and self-
introspective capabilities in agents while ensuring fairness and privacy within the system. We will use real data of
rush hour traffic flow in New York City and simulate the behaviour of a range of actors including buses, pedestrians,
delivery bicycles, CAVs and non-CAVs.
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we note that it is computationally less expensive to recompute a route for all vehicles within a platoon using S2 and
S4 (30 invocations of the Dijkstra rerouting algorithm within SUMO) than to recompute routes for each individual
vehicles as in S1 and S3 (80 invocations of the rerouting algorithm).

Table 2 shows that, in general, the average emissions of CO, NOx, HC and PMx for the network reduce at least by
about 70%, 35%, 64% and 39% respectively with the use of platooning and MMLC in S4 compared to S1 and S2. This
is because with MMLC, fewer vehicles are stopped or slowed down when there is an unexpected interruption of traffic
flow. Also with platooning leading to increased average speed, most emission gases are reduced. Our results for CO2
in the Krauss model show a slight increase in emissions for S4 over S3. We argue that this captures the disadvantage
of exclusively using the acceleration feature during platooning in an environment where all CAVs have their settings
changed during the platooning, as it is the case in using S4 on the motivating example environment. The results for
IDM model show that platooning can reduce the fuel consumption as well as the CO2 emissions. This is due to the
fact that IDM has parameters similar to the settings of vehicles under the platoon formation strategies.

AvSpd(m/s) AvTT(s) Fuel Usage (ml/s)
Col. #→ 1 2 3 4 5 6

CAVs % ↓ Krauss IDM Krauss IDM Krauss IDM
0 12.14 11.77 40.58 43.36 3038.06 2379.53

0.25 12.38 12.03 39.66 41.08 2813.63 2178.97
0.5 12.53 12.04 39.21 41.29 2647.82 2226.83

0.75 12.71 12.14 38.61 41.07 2472.50 2249.64
1.0 12.87 12.54 38.12 39.2 2271.07 2086.03

Table 3. Comparison of average vehicle speed, travel time and fuel usage for S4 with MMLC and Platooning using the Krauss and IDM car
following models when varying fraction of CAVs (left most column CAVs %) equipped with MMLC and platooning in the mixed traffic network

CO(mg/s) CO2(mg/s) NOx (mg/s) HC(mg/s) PMx(mg/s)
Col. #→ 1 2 3 4 5 6 7 8 9 10

CAVs % ↓ Krauss IDM Krauss IDM Krauss IDM Krauss IDM Krauss IDM
0 92375.84 92642.49 7067583.43 5535542.28 2779.76 2087.78 584.25 534.92 112.99 77.04

0.25 77942.21 63624.51 6545741.25 5068994.26 2535.93 1871.70 502.84 390.87 100.06 65.44
0.5 69116.71 69226.46 6159747.78 5180336.87 2352.77 1921.9 450.49 418.13 90.17 68.25
0.75 58651.23 70428.03 5751894.08 5233382.17 2147.07 1941.80 387.63 423.92 78.24 69.15
1.0 49760.34 51474.34 5283261.4 4852791.95 1920.28 1773.47 330.43 327.04 65.73 60.91

Table 4. Comparison of emissions for S4 with MMLC and Platooning using the using the Krauss and IDM car following models when varying
fraction of CAVs (left most column CAVs %) equipped with MMLC and platooning in the mixed traffic network.

In Table 3, we evaluate the effectiveness and efficiency of MMLC by scaling up the network to a mixed traffic
environment using strategy S4 consisting of 400 vehicles and simulated for 4750 seconds. To simulate the mixed-
traffic conditions, we generated random trips for CAVs and non-CAVs. As before, when using S4 all the routes that
involved the blocked link L4 are replaced by the MMLC recommended routes.

We note that only CAVs and CAVMNGRs in the mixed traffic environment are equipped with MMLC-based
coordination among agents as well as platooning. Consequently, we see that as the ratio of CAVs increases to 1.0, the
performance with respect to average speed increases by 2 to 6% while average travel time decreases upto 6% for the
Krauss model and 9% for the IDM model. The fuel consumption monotonically decreases to about 25% reduction for
the Krauss model and to about 12% reduction for the IDM model with the CAV ratio set to 1.0. Further, in Table 4,
we see that the various emissions also decrease between 7% and 45% with increasing ratio of CAVs. This indicates
the advantage of MMLC-enhanced CAVs in larger scale mixed traffic environments.

5. Conclusion

As CAVs become more prevalent, there is an opportunity to alleviate congestion by building smart traffic infras-
tructure of the future. Research on multiagent systems has the potential to contribute to this agenda. In this work, we
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argue that in open and dynamic environments, multiagent meta-level control is an effective way to determine when
the adaptation process should be performed and how much effort should be invested in adaptation as opposed to
continuing with the current action plan.

We have outlined some issues that arise in the context of an urban network – where heterogeneous actors interact –
and a potential solution approach. This solution is characterized by a supervisory framework for organizational control
to coordinate a vehicular network, while coping with traffic interruption events. Each acting agent consists of two
levels of reasoning, one of them being a meta-level control that can reason about alternate methods for deliberation.

We have shown the advantages of our approach by means of a motivating example, in which there are CAVs
that are heading to a lane that is blocked. We compared the performance of our approach, which has the ability to
choreograph coordination, to situations where such coordination is not available. In a microscopic simulation for the
case study presented in the paper, we were able to show that coordination led to about a 44% decrease in travel time,
7% increase in average speed, a 32% decrease in fuel consumption and about a 35% drop in emissions. Further, we
have evaluated the efficiency of our approach when there is mixed traffic. Due to the fact that our approach is able to
deal with rerouting (also within platoons), the advantage of having as many CAVs as possible becomes evident.

Our long term goal is to extend the investigation to other scenarios that involve coordination of further components
(bikes, pedestrians, mobility-on-demand vehicles, traffic signals), which would require automated learning and self-
introspective capabilities in agents while ensuring fairness and privacy within the system. We will use real data of
rush hour traffic flow in New York City and simulate the behaviour of a range of actors including buses, pedestrians,
delivery bicycles, CAVs and non-CAVs.
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