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ABSTRACT

META-LEVEL CONTROL IN MULTI-AGENT SYSTEMS

SEPTEMBER 2003

ANITA RAJA

B.S., TEMPLE UNIVERSITY

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor R. Lesser

Sophisticated agents operating in open environments must make complex real-

time control decisions on scheduling and coordination of domain activities. These

decisions are made in the context of limited resources and uncertainty about the

outcomes of activities. Many efficient architectures and algorithms that support these

computation-intensive activities have been developed and studied. However, none

of these architectures explicitly reason about the consumption of time and other

resources by these activities, which may degrade an agent’s performance. The problem

of sequencing execution and computational activities without consuming too many

resources in the process, is the meta-level control problem for a resource-bounded

rational agent.

The focus of this research is to provide effective allocation of computation and

improved performance of individual agents in a cooperative multi-agent system. This

vi



is done by approximating the ideal solution to meta-level decisions made by these

agents using reinforcement learning methods. A meta-level agent control architecture

for meta-level reasoning with bounded computational overhead is described. This

architecture supports decisions on when to accept, delay or reject a new task, when

it is appropriate to negotiate with another agent, whether to renegotiate when a

negotiation task fails, how much effort to put into scheduling when reasoning about a

new task and whether to reschedule when actual execution performance deviates from

expected performance. The major contributions of this work are: a resource-bounded

framework that supports detailed reasoning about scheduling and coordination costs;

an abstract representation of the agent state which is used by hand-generated heuristic

strategies to make meta-level control decisions; and a reinforcement learning based

approach which automatically learns efficient meta-level control policies.
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CHAPTER 1

INTRODUCTION

How does an agent efficiently trade-off the use of its limited resources between de-

liberations about which domain actions to execute and the execution of these domain

actions? This is the meta-level control problem for agents operating in resource-

bounded multi-agent environments.

Open environments are dynamic and uncertain. Complex agents operating in

these environments must reason about their local problem solving actions, coordinate

with other agents to complete tasks requiring joint effort, plan a course of action

and carry it out. These deliberations may involve computation and delays waiting

for arrival of appropriate information. They have to be done in the face of limited

resources, uncertainty about action outcomes and in real-time. Furthermore, new

tasks can be generated by existing or new agents at any time. These tasks have

deadlines where completing the task after the deadline could lead to lower or no

utility. This requires meta-level control which interleaves an agent’s deliberation

with execution of its domain activities.

Meta-level control involves deciding which deliberative actions to perform when

and whether to deliberate or to execute domain actions that are the result of previous

deliberative actions. In this dissertation, deliberative actions are also referred to as

control actions. To do this optimally, an agent would have to know the effect of all

combinations of actions ahead of time, which is intractable for any reasonably sized

problem. The question of how to approximate this ideal selection and sequencing of

1



domain and control actions without significant computational effort is the primary

focus of this dissertation.

There are three classes of deliberative actions discussed in this dissertation: in-

formation gathering actions, planning/scheduling actions and coordination actions.

These actions are non-trivial requiring exponential work in the number of domain

actions. Sophisticated schemes that control their complexity are used in most imple-

mented systems.

The first type of deliberative actions are information gathering actions which are of

two kinds. The first kind of information gathering action involves gathering informa-

tion about the environment which includes the state of other agents. This information

is used by the meta-level controller to determine the relevant control actions.These

actions do not use local processor time but they delay the meta-level deliberation

process. The second kind of information gathering action is the determination of

complex state features of the agent which involve significant amount of computation.

These features, for instance, can compute detailed timing, placement and priority

information about the primitive actions which have to be executed to complete the

agent’s tasks. The agent must make explicit meta-level control decisions on whether

to gather complex features and determine which complex features are appropriate.

The second type of deliberative actions involve planning and scheduling. Planning

is the process in which the agent uses beliefs about actions and their consequences

to search for solutions to one or more high-level tasks(goals) over the space of possi-

ble plans. It determines which domain actions should be taken to achieve the tasks.

Scheduling is the process of deciding when and where each of these actions should be

performed. In this research, planning is folded into the scheduling.

Finally, the third type of deliberative action, coordination, is the process by which

a group of agents achieve their tasks in a shared environment. In this research,
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coordination is the inter-agent negotiation process that establishes commitments on

completion times of tasks or methods.

A problem with most multi-agent systems and agents [7, 51, 57, 38, 87] is that

they do not explicitly reason about the cost of deliberative computation since they

do not perform deliberative computation. Thus, most systems, have no way to trade-

off the resources used for deliberative actions and domain actions. An agent is not

performing rationally if it fails to account for the overhead of computing a solution.

This leads to actions that are without operational significance [69]. Taking the cost of

computation into account leads to what Simon calls procedural rationality and what

Good refers to as type II rationality [29]. An agent exhibits such bounded rationality

if it maximizes its expected utility given its computational and other resource limits.

The intent of this research is to show that a meta-level reasoning component with

bounded and small computation overhead can be constructed that significantly im-

proves the performance of individual agents in a cooperative multi-agent system. If

significant resources are expended on making this meta-level control decision, then

meta-meta-level decisions have to be made on whether to spend these resources on

meta-level control. However, if the meta-level reasoning process has a small computa-

tional overhead, there is no need for explicit meta-meta level reasoning. This avoids

infinite regress of the meta-level control problem and is the approach used in this

dissertation.

The thesis of this work is to establish the following: Meta-level control with

bounded computational overhead allows complex agents to solve problems more ef-

ficiently in dynamic open multi-agent environments. Meta-level control is compu-

tationally feasible through the use of an abstract representation of the agent state.

This abstraction concisely captures critical information necessary for decision making

while bounding the cost of meta-level control and is appropriate for use in automati-

cally learning the meta-level control policies.
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Figure 1.1. Classical architecture of a bounded rational agent

1.1 Motivation

1.1.1 Agent Decision Space Hierarchy

An agent is an entity that receives sensations from the environment and responds

by performing actions that affect the environment using the effectors [58]. An ideal

agent is one that always takes the action that is expected to maximize its perfor-

mance criteria, given the percept sequence it has seen so far. Figure 1.1 describes

the components of the classic agent architecture. In this classic architecture, when a

percept is sensed by the agent, the control layer is immediately triggered regardless

of the current state. The control layer determines how the percepts can be processed

and mapped into domain action sequences.

Agent actions in the classic architecture are of two types: domain actions and con-

trol actions. Domain or execution actions are executable primitive actions. Sequences

of these actions achieve the various tasks (goals) by affecting the environment. This

research takes a simplified view of agent actions in that the only resources agents

reason about are the processing resources needed to complete an action. The exe-

cution behavior of a primitive action is characterized using statistical distributions
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describing the amount of resources used, the likelihood of successfully completing the

action and contributing to the utility of the task.

Actions taken by the control layer are called control actions. Agents are charac-

terized by the type of control actions they take : reflexive agents use reactive control

to respond immediately to percepts; goal-based agents act so that they will achieve

their goals; and utility-based agents try to maximize their own rewards. The agents

considered in this dissertation use a combination of reflexiveness, goal achievement

and utility maximization as criteria to optimize their performance. The control layer

in the classic agent architectures usually has a single option for control processing

with fixed cost in terms of resource usage. This control processing will reason about

the domain actions which have to be executed by the effectors.

In order to facilitate the explicit reasoning about control actions and their costs,

a new category of actions called meta-level control actions is introduced. The clas-

sic agent architecture is augmented with meta-level control which reasons about the

control actions and alternative ways of performing them. Figure 1.2 describes the

new agent architecture. The arrival of percepts trigger the meta-level control layer to

determine the tasks which the agent desires to pursue. The agent’s control layer de-

termines how these chosen tasks will be processed and mapped into action sequences.

A more detailed description of the architecture components is provided in Chapter 3.

Control actions can be described in one of two ways: One is based on viewing a

control action as an anytime algorithm that can be stopped at any point to obtain

a solution. The resource usage can be controlled by determining when to stop the

algorithm. Another way is to have different algorithms for performing a control action

which represents trade-offs in terms of resource usage and and utility accrued. Both

representations of control actions are exploited in this dissertation.

Meta-level control actions optimize the agent’s performance by choosing and se-

quencing domain and control actions. This includes interleaving the actions such
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that tasks are achieved within their deadlines and also allocating required amount of

processor and other resources to domain and control actions at the appropriate times.

Meta-level control can also be viewed as a sequential decision problem. The essence

of sequential decision problems is that decisions that are made now can have both

immediate and long-term effects; the best current action choice depends critically on

the types of future situations the agent will face and the action choices which have

to be made at those future decision points. The resource-bounds of the agent cause

the current meta-level action choices to affect the resources available to future action

choices. This effective meta-level control needs to use past performance information

to make predictions about the future so as to make non-myopic decisions at each

decision making point. This is in contrast to myopic decision making which tries to

optimize only the next state of the system.

Figure 1.3 describes the action hierarchy space in the new augmented agent archi-

tecture for a specific event, namely scheduling a task or set of tasks. The three layers

are the meta-level control actions, control actions and domain actions which are as

described above.
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Figure 1.3. Action Space Hierarchy for Scheduling event

1.1.2 Why is this problem difficult?

There has been previous work on meta-level control [69, 60, 73, 24] but there is

little that is directly related to the meta-level control problem discussed here. The

difficult characteristics of this problem are :

1. complexity of the information that characterizes the state of the agent and other

agents it interacts with;

2. variety of responses with differing costs and parameters available to the situa-

tion;

3. deadlines associated with these tasks;

4. high degree of uncertainty caused by the non-deterministic arrival of tasks and

outcomes of primitive domain actions;

5. consequence of decisions are often not observable immediately and may have

significant down-stream effects.
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Russell and Wefald [61] claim that it is possible to formulate the meta-level problem

using the same language as the domain-level problems, and solved using the same

mechanism. The decision on how to achieve a meta-level goal is called the meta-meta-

level problem. The uniformity of language enables the meta-level rules to apply to

meta-meta-level goals and so on. This results in very flexible systems, but introduces

the possibility of infinite regress [41, 25, 46, 23]. Like Russell and Wefald, the goal of

this dissertation is not to insist on optimal control for all reasoning. Instead meta-level

control actions in this research, will usually be taken without being the immediate

results of extensive deliberation. Decisions to invoke the meta-level controller are

hard-wired to event-based triggers. Meta-level control is implemented as a reflexive

computation with low and fixed overhead. The meta-level layer can also decide to

invest more resources in meta-level control itself, to gather more knowledge to assist

with the decision making in case the current information is not enough.

This research takes on a much more complex version of the problem than Russell

and Wefald did. The agents in this dissertation, are capable of pursuing multiple

tasks (goals) concurrently. Each task is represented using the task structure and has

its own deadline and potential utility that can be achieved as a result of its comple-

tion. The task structure describes one or more of the possible ways that the task

could be achieved. These alternative ways are expressed as an abstraction hierarchy

whose leaves are basic action instantiations. These primitive action instantiations are

called domain actions. Domain actions can be scheduled and executed and are char-

acterized by their expected quality and duration distributions. Information about

task relationships that indicate how basic actions or abstract task achievement affect

task characteristics (e.g. quality and time) elsewhere in the task structure and the

resource consumption characteristics of tasks are also embedded in the task structure.
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Figure 1.4. Task structure for Find Information on Laptops task

1.1.3 Motivating Example

Figure 1.4 describes the TÆMS task structure [19] for task Find Information

on Laptops. A detailed description of TÆMS a domain independent framework for

describing task structures is provided in Appendix A . The task is achieved by com-

pleting two intermediate steps sequentially. The first step is to Obtain Information -

this can be done by accessing either Company 1’s Site, or Company 2’s Site, or both

sites if time permits. Once the information is obtained, the agent will have to make

a decision by choosing a laptop that fits user criteria from one of the two companies

or by telling the user that none of the available choices fits her criteria. Each of the

primitive actions (leaves in the task structure) are statistically characterized in two

dimensions: quality and duration.

I will now describe a real-world, albeit simple example that will describe the com-

plex interactions between the domain and control actions of the agent. Consider an

administrative agent, Yogi, capable of performing multiple tasks such as find informa-

tion on laptops with the best value, answering the telephone and paying bills. Suppose
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Yogi receives these tasks dynamically and does not know the arrival model ahead of

time. Each of the tasks have an associated task structure. In the case of the Find

Information on Laptops task, the domain actions are Company 1 Site and Com-

pany 2 Site and Make Decision. These are actions that affect the environment.

Each task has a set of domain actions as described by its task structure.

The control actions for Yogi in this scenario are scheduling the task with varying

levels of effort. Scheduling the task involves finding the appropriate sequence of

domain actions given the time and other resource bounds. Examples of control actions

for the Find Information on Laptops task would be whether to search

1. both Company 1’s site and Company 2’s site

2. either Company 1 or Company 2

3. none of the sites and to return a null answer (due to lack of resources)

The meta-level control actions are whether to do a task and how much time and

effort to spend on control actions related to the task and how much time and effort

to spend on domain actions related to the task. Figure 1.5 describes some of the

meta-level control decisions Yogi has to make.

Suppose Yogi does not perform any meta-level reasoning about the importance or

urgency of the tasks. Yogi will then spend the same amount of time deciding whether

to answer a ringing phone as it does on deciding which laptop manufacturer sites to

visit. If Yogi is equipped with meta-level reasoning capabilities, it will recognize the

need to make quicker decisions about the phone call than about the laptops since

there is a tight constraint on the ringing phone, namely that the caller could hang

up.

Meta-level control will also allow Yogi to dynamically change its decisions based on

its current state. For instance, if the deadline for determining the laptop information
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Figure 1.5. Meta-Level Control Decisions to be taken by Yogi

is imminent, Yogi could decide not to answer any phone calls until the search is

completed and the suggestion is made to the user.

Another example is as follows: suppose Yogi is expecting an important phone call

in the next 5 minutes and expects the call to last an hour. Now suppose Yogi gets a

request to find a laptop given a set of criteria within 20 minutes and the utility of this

task was lower than that of engaging in the important phone call. If Yogi accepts a

task and then renegs on the commitment, it will be charged with a significant penalty.

If Yogi refuses to do the laptop tasks, another agent would be assigned the task and

it could get done in time. Also suppose Yogi has some bills that it has to pay and

paying bills is an interruptible task with the deadlines being far out in the future.

Yogi, in this case, should decide to refuse the laptop task and choose to pay bills while

waiting for the phone call. When the phone call ends, Yogi can resume paying bills

as long it is does not have any new tasks in the agenda to reason about.
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Yogi is thus able to make better decisions about answering calls as well as com-

pleting its other tasks by dynamically adjusting its decision based on its current state

and the tasks at hand.

1.1.4 Taxonomy of meta-level decisions

There are five types of event triggers that require meta-level decision making

1. Arrival of a new task from the environment

2. Presence of a task in the current task set that requires negotiation with a non-

local agent.

3. Failure of a negotiation to reach a commitment

4. Decision to schedule a new set of tasks or to reschedule existing tasks

5. Significant deviation of online schedule performance from expected performance

The meta-level controller is invoked when one of the five triggers occurs. The

choice of these particular trigger events was deliberate because in the task allocation

domain and other similar domains, these events occur frequently through out the

finite horizon under consideration.

The meta-level controller was specifically defined as a trigger-based mechanism

and not as a component invoked at uniform time intervals for the following reasons:

Periodic activation can be too frequent in loosely constrained environments leading

to unnecessary overhead of meta-level control and can be too infrequent and hence

ineffective in very dynamic environments. The trigger based mechanism is a general

solution which can handle the entire spectrum of environments without any tweaking.

Secondly, a trigger-based mechanism is suitable for domains where activities requiring

meta-level control do not necessarily arrive in a uniform distribution. If the activities
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tend to arrive in bursts, then the periodic activation method would be too infrequent

during the burst periods and waster resources during the periods of inactivity.

An example of an event trigger that wasn’t included is a situation in which one of

the primitive actions goes out of control and continues execution beyond its expected

finish time resulting in overuse of allocated resources. Although this event can lead

to bad performance, it was not added as a trigger for two reasons: one that it occurs

infrequently and secondly, since the other triggers occur quite frequently, the meta-

level controller will be invoked sooner than later and the meta-level controller will

recognize the overuse of resources and abort the errant primitive action.

The following are some characteristics of problem domains where the type meta-

level control described in this dissertation may provide improvement in performance:

The agent internally generates a new goal as a result of sensing perceptions. These

goals can be revised as a result of sensing internal actions and their effects on the

environment. Goal analysis, performed by the control layer, is the process by which

an agent receives a goal or set of goals as input and outputs a sequence of executable

methods with start time and finish constraints and associated expected utility. Meta-

level control is process of deciding among the following choices: to drop the goal

and not do any analysis; to delay goal analysis; reason about the amount of effort

to go into goal analysis; and to determine the context of the goal analysis - whether

to analyze it a single goal or multiple goals within a single agent perspective; or to

analyze single or multiple goals in the context of a facilitating agent’s goals.

Meta-level control is useful in situations where options for goal analysis are expen-

sive in other words the costs or accumulated costs affect agent performance detrimen-

tally. Meta-level control is also useful when the cost of goal analysis is significantly

more expensive than cost of meta-level control actions. It is also useful where a choice

has to be made about the type of goal analysis and the options for goal analysis have

significantly different costs and produce results with significantly different utilities.
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The range of the number of options for goal analysis, the difference in the performance

characteristics where meta-level control will be most effective will be the subject of

future research.

In some situations, meta-level control can also be viewed as an effective and inex-

pensive alternative for making the same decisions as the more expensive goal analysis.

For instance, when a goal arrives and its deadline is too close for the agent to execute

the goal, the meta-level controller will quickly and inexpensively determine that the

goal has to be dropped. The goal analysis would have come up with the same deci-

sion after completing its computations which have associated costs. In the absence

of meta-level control, these costs can add up leading to degradation in performance.

1.1.5 Cost-Benefit Analysis of Meta-Level Control

In order to provide a clear picture of these five decisions described above, consider

the simple scenario consisting of two rovers Fred and Barney. Rovers are unmanned

vehicles equipped with cameras and a variety of scientific sensors for the purpose of

planetary surface exploration. The discussion here will specifically focus on the vari-

ous meta-level questions that will have to be addressed by Fred. Figure 1.6 describes

Analyze Rock, also called task T0, and Explore Terrain, also called task T1, which

are the tasks performed by Fred.

In this example, each top-level task is decomposed into two executable primitive

actions. In order to achieve the task Analyze Rock , Fred must execute both primi-

tive actions Get To Rock Location and Focus Spectrometer on Rock in sequence. All

primitive actions in TÆMS, called methods, are statistically characterized in three

dimensions: quality, cost and duration. Quality is a deliberately abstract domain-

independent concept that describes the contribution of a particular action to overall

problem solving. Thus, different applications have different notions of what corre-

sponds to model quality. The sequence is denoted by the enables arrow between the
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Figure 1.6. Tasks that can be performed by agent Fred

two actions and the min quality attribution factor (which denotes a conjunction op-

erator) states that the minimum of the qualities of the two actions will be attributed

to the Analyze Rock task. To achieve the task Explore terrain, Fred can execute

one or both primitive actions Examine Terrain and Collect Samples within the task

deadline and the quality accrued for the task will be cumulative (denoted by the sum

function).

Barney is equipped with a storage compartment while Fred is not. The Collect

Samples method requires Fred and Barney to coordinate: Fred has the ability to pick

up the soil sample and put it in Barney’s storage compartment. This relationship

between the two agents is denoted by the non-local enables from Barney’s Arrive

at Location Method (N5) method (Barney’s task structure is not shown) to Fred’s

Collect Samples method. Utility and duration distributions for each primitive action

is provided.

The following are some of the specific meta-level questions that will be addressed

by any individual agent. Each meta-level question is followed by a description of
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Fred’s perspective of each question and the associated costs and benefits. The state

information and the trade-offs that affect the decision making process are enumerated.

1. Arrival of a new task from the environment.

Meta-Level Question: Should Fred schedule newly arriving task Tx at arrival

time or postpone scheduling to sometime in the future or drop that particular

instance of the task.

Benefit: If the new task has low expected utility and its deadline is very close

and high probability of high utility task arriving in the future, then it should be

discarded. This means Fred chooses not expend its limited resources on a low

priority task and instead will wait for future high priority task. If the incoming

task Tx has very high priority, in other words, the expected task utility is very

high and it has a relatively close deadline, then Fred should override its current

schedule and schedule the new task immediately. If the current schedule has

average utility that is significantly higher than the new task and the average

deadline of the current schedule is significantly closer than that of the new task,

then reasoning about the new task should be postponed till later.

Cost: If the new task is scheduled immediately, the scheduling action costs

time, and there are associated costs of dropping established commitments if the

previous schedule is significantly revised or completely dropped. These costs

are diminished or avoided completely if the task reasoning is postponed to later

or completely avoided if the task is dropped.

2. Presence of a task in the current task set that requires negotiation with a non-

local agent.

(a) Meta-Level Question: Should method Collect Samples, which is enabled

by Barney’s method Arrive at Location, be included in the Fred’s sched-

ule?
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Benefit: If method Collect Samples is included in Fred’s schedule, Fred

can increase its total utility.

Cost: This implies that Fred and Barney have to negotiate over the com-

pletion time of Barney’s method Arrive at Location and this will take time.

(b) Meta-Level Question: If Fred decides to negotiate, it should also decide

whether to negotiate by means of a single step or a multi-step protocol [45]

that may require a number of negotiation cycles to find an acceptable

solution or even a more expensive search for a near-optimal solution. For

example, should a single shot protocol which is quick but has a chance of

failure be used or a more complex protocol which takes more time and has

a higher chance of success.

Benefit: If Fred receives high utility as a result of completing negotiation

on finish time of Arrive at Location, then better the protocol, the higher

the probability that the negotiation will succeed.

Cost: The protocols which have a higher guarantee of success require

more resources, more cycles and more end-to-end time in case of multi-

step negotiation and higher computation power and time in case of near-

optimal solutions. (The end-to-end time is proportional to the delay in

being able to start task executions).

3. Failure of a negotiation to reach a commitment

Meta-Level Question: If the negotiation between Fred and Barney using a

particular negotiation protocol fails, should Fred retry the negotiation with Bar-

ney again 1; if so, should Fred use the same negotiation mechanism as before or

1An interesting extension to this meta-level question which has not been explored in this thesis
is whether Fred should renegotiate with Barney or with another agent Wilma who is capable of
performing the same task. The states and hence the MetaNeg information of all the agents could have
changed between the time of consideration of the previous negotiation and the current renegotiation
and it might be better for Fred to negotiate with Wilma rather than Barney
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an alternate mechanism; and how many such retries should take place?

Benefit: Negotiation is preferred if Fred will receive high utility as a result

of Barney completing Arrive at Location method. There is a higher chance of

negotiation succeeding if more time(cycles) is given. Since resources have been

spent on figuring out a solution to the negotiation, it may be profitable to put

in a little more effort to achieve a solution.

Cost: This implies that Fred and Barney have to negotiate over the comple-

tion time of Barney’s method Arrive at Location and this will take time and

computational resources. If there is a very slight or no probability of finding an

acceptable commitment, then resources which can be profitably spent on other

solution paths are being wasted and the agent might find itself in a dead-end

situation with no resources left for an alternate solution.

4. Decision to schedule a new set of tasks or to reschedule existing tasks

Meta-Level Question: When Fred’s scheduler is called, it has to decide how

much effort to invest in scheduling. Also how flexible should the schedule pro-

duced by the detailed scheduler be? How much slack should be inserted in the

schedule?

Benefit: If the expected schedule performance characteristics are highly uncer-

tain, then it is better for the scheduler to put in less effort. If there is slack in

the schedule, then the system can deal with unanticipated events easily without

having to bear the overhead of a reschedule.

Cost: If the schedule performance is not as expected, then rescheduling has to

be called anyways and Fred might put itself in a dead-end with no resources to

find an alternate solution. This means a trade-off on the number of resched-

ule calls and effectiveness of these calls has to be made. Inserting slack in the

schedule means that fewer primitive actions will be scheduled causing the avail-

able time to not be used to maximum capacity, but at the same time avoiding
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reschedule costs in case of unexpected events. Here, the resources allocated

towards current goals is being traded-off to provide resources for unanticipated

future events.

5. Significant deviation of online schedule performance from expected performance.

Meta-Level Question: When Fred’s schedule deviates from expected perfor-

mance by threshold α, should a reschedule be invoked automatically?

Benefit: If Fred observes that the schedule will fail to achieve its goal in a

timely fashion, then it can reschedule and try an alternate path instead of go-

ing down a path which will definitely fail.

Cost: There is a cost associated with calling the scheduler and revising the

commitments from the previous schedule.

1.2 Assumptions

The agents are cooperative and will prefer alternatives which increase social util-

ity/quality even if it is at the cost of decreasing local utility. An agent may concur-

rently pursue multiple high-level goals and the completion of a goal derives quality

for the system or agent. The overall objective of the system or agent is to maximize

the utility generated over some finite time horizon. Although the horizon is set to 500

time clicks in the experiments in this dissertation, this information is not provided

to the agents. This was deliberately done to equip the agents to operate in domains

and environments with indefinite horizons (an unknown finite horizon). Future work

would involve extending the work to domains with finite and infinite horizons.

The high-level goals are generated in one of two ways: internal or external events

are sensed; and requests from other agents for assistance. These goals must often be

completed by a certain time in order to achieve any quality. It is not necessary for

all high-level goals to be completed in order for an agent to derive quality from its
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activities. The partial satisfaction of a high-level goal is sometimes permissible while

trading-off the amount of quality derived for decrease in resource usage.

The agent’s scheduling decisions involve choosing which of these high-level goals

to pursue and how to go about achieving them. There can be local and non-local

dependencies between tasks and methods. Local dependencies are inter-agent while

non-local dependencies are intra-agent. These dependencies can be hard or soft prece-

dence relationships. Coordination decisions involve choosing the tasks that require

coordination. deciding whether to coordinate with another agent and how much effort

much be spent on coordination. Planning/Scheduling and coordination activities do

not have to be done immediately after there are requests for them and in some cases

may not be done at all. There are alternative ways of completing planning/scheduling

and coordination activities which trade-off the likelihood of these activities resulting

in optimal decisions versus the amount of resources used. Agents make the simpli-

fying assumption that results of coordination, in this case it is negotiation for task

allocation, are binding and assume that other agents will not decommit from their

commitments at later stages.

1.3 Formal Model

This dissertation describes a heuristic approach rather than a theoretical approach

to meta-level control reasoning in multi-agent systems. However, it is possible to

define a decision theoretic formulation of the meta-level control problem.

1. Let S be the set of states of the agent and siε S denote the agent state at stage

i, i = 0, 1, 2, 3 . . . , n

2. A is the set of possible control actions and aiε A is the action taken by the agent

in state si.
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Control actions do not directly affect the utility achieved by the agent since

they affect only the agent’s internal state. These actions consume time and

have only indirect effects on the external world.

Control actions are followed by the execution of utility achieving domain actions.

These domain actions are directly the result of control actions in the current

and preceding states. These domain actions are not explicitly represented in

this model since they are encased by the control actions.

3. A policy π is a description of the behavior of the system. A stationary meta-

level control policy π : S → A specifies, for each state, a control action to be

taken. The policy is defined for a specific environment.

An environment is defined by three distributions describing task type, task ar-

rival rate and task deadline tightness. Meta-level control is the decision process

for choosing and sequencing control actions. In this work, there are five event

triggers which invoke the meta-level control process. The occurrence of any of

the triggers interrupts any other activity the agent in currently engaged in and

control is shifted to the meta-level controller.

4. sj is the new state reached when the agent is interrupted by an event requiring

meta-level control reasoning while executing control action π(si) followed by

the execution of corresponding domain actions that follow π(si).

5. R(si, π(si), sj) is the reward obtained in state sj as a consequence taking control

action π(si) in state si and then executing the domain actions that follow π(si).

The reward is the cumulative value of the tasks and domain actions which

are completed between the state transitions. Since the values achieved by the

tasks have associated uncertainties, the reward function is represented as a

distribution.
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6. Uπ(si) is the utility of state si under policy π.

7. P (sj|si, π(si)) is the probability that agent is in state sj as a result of taking

action π(si) which is the action prescribed by policy π in state si.

The above model defines a finite Markov decision process [3].

According to decision theory, an optimal action is one which maximizes the agent’s

expected utility, given by

E[Uπ(si)] = E[
n

∑

j=1

γj R(si, π(si), sj)]

γε[0, 1) is a discount-rate parameter which determines the present value of future

utility gains.

which can be computed as follows

E[Uπ(si)] =
n

∑

j=1

P (sj|si, π(si))[R(si, π(si), sj) + γj E[Uπ(sj)]]

The meta-level control problem is to find a best meta-level control policy π∗ which

maximizes the expected return for all states. This optimal policy can be found using

dynamic programming [3] and reinforcement learning [75] methods. These methods

will implicitly determine the transition probability model and reward function defined

previously.

In this work, the complexity of the state space makes it difficult to find the optimal

policy. So an approximate meta-level control policy is found using a abstract state

representation which will capture only the information relevant to the decision making

process.

1.4 Example Application Domains

The following are some real-world examples where effective meta-level control can

lead to improved system performance.
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Planetary Rovers: Rovers are automated vehicles used in planetary exploration.

A rover has a set of pre-assigned tasks. New tasks can be generated when certain

environmental phenomenon are observed. The domain actions are the external actions

the rover takes on the environment to accomplish its tasks. The control actions are

the computational actions the rover has to take to determine which domain actions

to execute and how much resources to allocate to each domain action. The rover

must make situation-specific run-time meta-level decisions on which tasks to perform

and how much effort to put into deciding how to best accomplish each task given the

current context. The rover also has to make meta-level decisions on when to make

autonomous choices and when it is necessary to initiate communication to its home

base to receive directions. Communication is expensive, however, the decision choices

provided by home base are as good as, if not superior, to locally made choices. If it

is overloaded with tasks or anticipates being overloaded with tasks in the future, the

rover must also make meta-level choices on whether to negotiate with another rover

to transfer a task. This type of meta-level control will allow the system to maximize

the utility gained from a set of tasks and to revise the task allocation dynamically in

response to changing circumstances.

Truck Scheduling: The task of a dispatch agent in a freight forwarding company

is to schedule a fleet of vehicles and their drivers such that all incoming and accepted

transportation orders will be performed with minimal costs and maximal profit. The

domain actions are actions on the environment which involve taking the vehicles out

on the road and making the deliveries in order to complete the delivery contracts.

The control decisions involve determining the route for the trip, the sequence of the

deliveries such that deadlines are met and limits on driving hours are obeyed. The

agent must make meta-level decisions on which delivery contracts to accept and which

to reject based on its current contracts and resource constraints. The agent may also

decide to accept a high utility contract, even if it is over committed and can’t complete
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the job itself. The agent will make the decision to accept the contract based on a

successful negotiation with a sub-contractor to complete the task and it will do this

if the task has very high utility or if the agent wants to maintain a good history

with the valued customer. The resource constraints in this domain are the number

of available trucks, their prescheduled routes, space available and driver allocation.

The delivery contracts will have constraints on time windows for pick up and delivery

which have to be adhered to.

Financial Portfolio Management: A portfolio manager agent as described in

Decker et al [16] has the task of managing an investment portfolio and achieving

a specified rate of return over time, using various information sources. This task

of monitoring portfolio assets involves processing the enormous amount of contin-

ually changing information. The domain actions involve accessing of the various

information sources about assets and processing the information that is obtained.

The control actions involve dynamically sequencing the information gathering and

information processing actions such that decisions on assets can be made before the

information gathered becomes irrelevant. The meta-level actions involve determining

which of the variety of assets the agent should target; and choosing the kinds of infor-

mation sources (market data, financial report data, technical models, analyst reports,

breaking news) to consider while making a decision on each asset and which ones to

definitely avoid.

Team Selection: Consider an agent whose role is to be a basketball coach.

Suppose the agent is aware of the strengths, weaknesses and current physical condition

of each player on the team. The agent also knows the characteristic features of the

opposing team. Based on this knowledge, the coach agent has to make meta-level

decisions on which players should be benched, which players to have as back-ups and

which of them should definitely be on the court. Once the meta-level choices are

made, the control decisions would involve devising a strategy based on the abilities of

24



chosen players to win the game; this could include decisions on how much game time

to allocate to each of the chosen players and when to have them on the court. The

domain actions would be the actions which happen on the court during the play.

1.5 Overview of Contributions

1. Meta-level Control Architecture: I present a novel meta-level control agent

architecture for bounded-rational agents operating in a complex multi-agent sys-

tem. The architecture allows for accounting for costs at all levels of reasoning.

The meta-level control mechanism has limited and bounded computational over-

head and supports reasoning about planning and scheduling costs as first-class

entities. The system adapts its computational effort from exact to approximate

computation based on its resource constraints.

2. Application of Empirical Reinforcement Learning to a Complex Do-

main: I show that Reinforcement learning is a viable approach for studying the

meta-level control problem. I model the meta-level controller using a Markov

decision process such that an Q-Learning algorithm described in [72] can be ap-

plied to learn efficient meta-level control policies. I also describe experiments on

learning curve saturations, policy generalization and issues faced by co-learning

agents

3. Abstraction-based Reasoning: I show that meta-level reasoning based on

abstractions of the real system state makes it computationally feasible. A few

high-level features that accurately capture the state information and task arrival

model enable the meta-level control component to make useful decisions which

significantly improve agent performance.

Another form of abstraction-based reasoning involves representing tasks at vary-

ing levels of detail. Knowledge about all tasks is gathered manually through an
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offline process. This knowledge includes potential schedules in the form of linear

sequences of primitive actions and their associated performance characteristics

such as expected quality distribution, expected duration distribution, and ex-

pected duration uncertainty for achieving the high level tasks. The expected

values are acquired by systematically searching over the space of objective cri-

teria. The abstraction hides the details of these schedules and provides only the

high level information necessary to make meta-level choices.

4. Adjustable Autonomy: Adjustable autonomy allows systems to operate with

dynamically varying levels of independence, intelligence, and control. A human

user, another system, or the autonomous system itself may adjust an agent’s

”level of autonomy” as required by the current situation. Most current work

deals with the ability of humans to adjust the autonomy of agents in multi-agent

systems[65]. This work uses the notion of agent-centered autonomy which is

closely related to idea of building functionally accurate cooperative distributed

systems [42]. The FA/C work describes locally autonomous agents, which plan

independently but act as part of a larger system and exhibit diverse behavior.

These agents may be fully cooperative or choose to act more selfishly. Control

actions in the system described in this thesis such as scheduling and coordination

require resources and hence reduce the local autonomy of agents to perform local

domain activities. I also show how meta-level control can be viewed as a decision

process which determines the local autonomy of an agent.

5. Comparison study of various meta-level control strategies I compare

the performance of the learning-based meta-level control methodology to in-

creasingly sophisticated approaches, all based on the high-level features used to

represent system state, to handle the meta-level control problem. In the most

simple case, the meta-level control policy is a deterministic policy where the
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control action that has the highest expected utility and is most expensive is

always chosen independent of the agent’s state. In this case, there is no explicit

meta-level control and reasoning about control costs is ignored. The second case

is where the meta-level controller randomly chooses the control action from the

set of possible choices. and high quality control action is always chosen. In the

third case, the meta-level control policy is a heuristic policy is a set of hand-

generated rules that are mostly environment independent. Then, I explore a set

of more sophisticated set of hand generated rules that use knowledge about task

characteristics including arrival times and deadlines. Finally, a reinforcement

learning approach which uses the high-level state features to automatically learn

the meta-level control policy is evaluated.

1.6 Outline

Chapter 2 situates this research in the context of extensive research done in the

fields of planning, control, meta-level control and machine learning.

Chapters 3, 4 and 5 comprise the body of the dissertation. They describe the

specifics of the meta-level control architecture, and a succession of methodologies for

constructing meta-level control policies.

Chapter 3 describes the meta-level agent architecture which can support reasoning

about costs at all levels of the decision making process; various meta-level decisions

that need to be made; and the state information necessary to make these decisions.

A description of high-level features that capture the state information concisely while

bounding the size of the state space is also provided. This is followed by a formal

description of the problem. A detailed example illustrating the functionality of the

infrastructure is presented.

Chapter 4 describes two strategies based on hand-generated heuristics: the naive

heuristic strategy and the sophisticated heuristic strategy. They differ in the amount
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of environmental information available as part of the system state. These strategies

use the high-level features that will be provided to the meta-level learning strategy.

Snapshots of the meta-level reasoning process for specific exogenous events are also

presented. The performance of the hand-generated strategies provide a sanity check

on the effectiveness of the state features to allow for effective meta-level control

Chapter 5 begins with a discussion about why reinforcement learning is an ap-

propriate solution approach for meta-level control. Then, the states and actions of

the underlying Markov decision process [56] used by the learning component are de-

scribed. Experiments describing the viability of an empirical reinforcement learning

algorithm both in single agent as well co-learning multi agent environments are pre-

sented.

Chapters 4 and 5 also present empirical results for single-agent and multi-agent

scenarios along with the strategy.

The dissertation concludes with Chapter 6, in which the strengths and limitations

of this research and directions for future research are discussed.
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CHAPTER 2

RELATED WORK

2.1 Agent Control and Architectures

There has been enormous amount of work on intelligent agent control e.g. [4,

26, 50, 82, 89]. These systems describe flexible and goal-directed mechanisms capable

of recognizing and adapting to environmental dynamics and resource bounds. The

emphasis in these works is to build an adaptive control layer which reasons about

domain-level costs. They do not, however, explicitly reason about the control costs.

The meta-level control architecture in my research reasons explicitly about control

costs and includes reasoning about costs at all levels of computation.

2.1.1 Subsumption and three-layer architectures

Reactive planning, which uses pre-defined sensor-action rules, can effectively re-

spond to dynamic changes in real-time environments. However, it is in general chal-

lenging to strategically reason about objectives using reactive planning because it

does not account for unexpected developments in the environment. Therefore, ide-

ally, deliberative and reactive planning should be integrated in environments with

unknown dynamics.

There has also been a lot of work on layered architectures within reactive planning.

In the mid-1980’s, Brooks introduced the Subsumption Architecture [10] which uses

a layered finite state machine to represent the agent function and stresses the use of

minimal state information. The subsumption architecture is not equipped to handle

multiple tasks since it cannot switch between control methods automatically. Three
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different groups of researchers [12, 27, 5] working more or less independently came up

with a three layer architecture that addresses this control problem at about the same

time. The three layer architecture arises from the empirical observation that effective

algorithms for controlling mobile robots tend to fall into three distinct categories :

a reactive feedback control mechanism, a reactive plan execution mechanism, and a

mechanism for performing time consuming deliberative computations. The three layer

architecture is based on the premise that algorithms of the higher layer can provide

effective computational abstractions to the layer just below it. The three layers are:

the deliberative planning layer, that does detailed reasoning about goals and resource

constraints; the skills layer, that is based on a reactive feedback control mechanism

that does not use state information; and a sequencer layer, that connects the other

two layers and governs routine sequences of activity that rely on internal state. The

meta-level agent architecture described in this dissertation also has this view that

higher levels of the architecture provide useful abstractions to reason about the lower

levels. The 3T (3Tier) [6] architecture is constructed to allow for integration of control

algorithms in the bottom layer with advanced planning and scheduling components in

the top layer. The top layer is event driven and computationally expensive. The 3T

architecture, unlike the meta-level architecture, does not have a meta-level layer that

explicitly reasons about deliberative costs. Also, in the meta-level architecture, only

two of the three layers are decision making layers and both these layers use internal

state to make their decisions.

2.1.2 Beliefs-Desires-Intentions Architectures

The Beliefs-Desires-Intentions (BDI) model [8] is probably the most popular ap-

proach towards the design of intelligent agents. The model defines trigger behaviors

driven by conceptually modeled interactions and goals rather than procedural in-

formation. In addition, the BDI model seems to be a functional abstraction for
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the higher-level reasoning processes such as action selection. Intelligent Resource-

bounded Machine Architecture (IRMA) [9], an architecture for resource-bounded 1

deliberative agents, has four key symbolic data structures: a plan library, and ex-

plicit representations of beliefs, desires, and intentions. Additionally, the architecture

has: a reasoner, for reasoning about the world; a means-ends analyzer, for deter-

mining which plans might be used to achieve the agent’s intentions; an opportunity

analyzer, which monitors the environment in order to determine further options for

the agent; a filtering process; and a deliberation process. The filtering process is

responsible for determining the subset of the agent’s actions that are consistent with

the agent’s current intentions. The choice between competing options is made by

the deliberation process. These features are very similar to my meta-level control

architecture. One drawback with BDI architectures is that they don’t adapt well to

dynamic environments which are characterized by unknown task arrival models. Also,

BDI architectures do not reason explicitly about the cost of the means-end analysis

to determine the agent’s intentions. The meta-level control architecture has learning

capabilities which support reasoning about control activities and reasons about the

costs of computations at all levels.

2.1.3 Procedural Reasoning System

The Procedural Reasoning System (PRS) [28] is a hybrid system, where beliefs are

expressed in first-order logic and desires represent system behaviors instead of fixed

goals. It is an architecture for embedded systems that need to deliberate in real-time.

A PRS agent consists of a database of the system’s current beliefs, a set of current

goals, a library of plans (called knowledge areas or KAs) and an intention structure.

The KAs describe sequences of actions and tests that can be performed to meet a

goal or react to a situation. The intention structure consists of a partially ordered set

1The agent resource considered is computational power
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of those plans chosen for execution. An interpreter works with these components to

select an appropriate KA based on beliefs and goals, place that plan in the intention

structure and execute it. Meta-level KAs are functionally similar to the meta-level

control layer in the agent architecture presented in my research. The meta-level KAs

are used to decide among multiple applicable domain KAs in a particular situation,

reason about failure to satisfy goals, and manage the flow of control among intentions

(including determining when to continue applying meta-level KAs versus executing

the current domain-level plan). KAs are interruptible when external events cause

changes to the database, thus allowing rapid response to changing environmental

situations. PRS can be configured to respond to world events within a bounded

amount of time. PRS is not concerned with cost of meta-level reasoning explicitly. It

would probably be advantageous for the PRS architecture to reason about costs at

all levels and not only at level of the domain KAs.

2.1.4 Guardian

Hayes-Roth [32] describes an opportunistic control model that can support dif-

ferent control modes expected of an intelligent agent. The control model handles

multiple goals, limited resources, and dynamic environments. She argues that in dy-

namic environments, it is often necessary to make decisions that may not be optimal,

but are rather satisfactory under the current conditions. The meta-level control work

described in this dissertation similarly computes approximate solutions rather than

optimal solutions.

The system she develops that solves problems closest to the complexity to the

problems I am interested in is Guardian [33]. It is an experimental intelligent agent

based on a blackboard architecture for monitoring patients in a surgical ICU. The

agent consists of a manager that filters and processes inputs, a satisficing control

cycle to bound the amount of time spent doing meta-level reasoning, and an anytime
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diagnosis component. Large amounts of input data arrive at the agent periodically.

Much of this is low level data that just confirms current patterns, but occasionally

important or unexpected information arrives. The input manager dynamically builds

and modifies filters to sending new important information to be processed by the rea-

soning component while not overburdening it with needless detail as problem solving

progresses. High-level control takes the form of plans that are dynamically created at

runtime by control knowledge sources. For an actual application constructing these

control knowledge sources and control plans can be a major tasks. They emphasize

that such dynamic construction is necessary because of the changing requirements of

the filters in different problem solving situations.

Guardian has an agenda based control mechanism. The control cycle chooses

the best action to perform by processing actions most likely to be rated highly first.

As soon as an action is found that is good enough or the time limit for control

reasoning has run out, the best action found so far is recommended. The anytime

diagnosis component diagnoses and recommends treatment for medical conditions in

the patients being monitored. This component uses action based hierarchies, which

are similar to decision trees, and each node in the hierarchy is a collection of faults,

human error or machine failure, with associated action to take.

These components give Guardian the ability to be reactive in situations that

require it, by using input filters to separate out important data, and a satisficing

control cycle to quickly determine how to respond to it. Guardian, however, is not

equipped with an overall planning mechanism to guide its real-time behavior. It does

not reason about long-term effects of choices explicitly.

2.2 Bounded Rationality and Meta-Level Control

Flexible, autonomous systems in complex environments generally require the abil-

ity to reason about resource allocation to computation at any point in time. Doyle’s
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’rational psychology’ project [22] is based on the idea that computations, or state

changes, are also actions to be reasoned about. He used the idea of bounded rational-

ity in the context of beliefs, intentions and learning. Horvitz [34] also studied rational

choice of computation in the context of designing intelligent systems.

The basic idea of bounded rationality arises in the work of Simon with his def-

inition of procedural rationality [69]. Simon’s work has addressed the implications

of bounded rationality in the areas of psychology, economics and artificial intelli-

gence [71]. He argues that people find satisfactory solutions to problems rather than

optimal solutions because people do not have unlimited processing power. In the area

of agent design, he has considered how the nature of the environment can determine

how simple an agent’s control algorithm can be and still produce rational behavior.

In the area of problem solving, Simon and Kadane [70] propose that search algo-

rithms for finding solutions to problems given in terms of goals are making a trade-off

between computation and solution quality. A solution that satisfies the goals of a

problem is a minimally acceptable solution.

Good’s type II rationality [29] is closely related to Simon’s ideas on bounded

rationality. Type II rationality, which is rationality that takes into account resource

limits, is a concept that has its roots in mathematics and philosophy rather than

psychology. Good creates a set of normative principles for rational behavior that

take computational limits into account. He also considers explicit meta-level control

and how to make decisions given perfect information about the duration and value of

each possible computation.

Russell, Subramanian and Parr [60] cast the problem of creating resource-bounded

rational agents as a search for the best program that an agent can execute. This def-

inition of rationality does not depend on the method used to create a program or the

method it uses to do computation but only on the behaviors that result from run-

ning the program. In searching the space of programs, the agents can be optimal for
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a given class of programs or they can approach optimal performance with learning,

again given a limited class of possible programs. The assumption of a perfectly ratio-

nal agent is not feasible in real-time multi-agent systems. The approach I take in my

work is a constructive one that Russell calls meta-level rationality. By approximating

the correct meta-level decisions, the agents attempt to produce high expected utility

within the resource limits. However, the agents provide no guarantees about their

optimality.

Flexibility in manufacturing systems is a feature which has a functionality similar

to meta-level control. Flexibility is widely understood as the ability of a manufactur-

ing system to respond to change [14], often extended with the proviso that response

should be rapid and cost effective. From a managerial point of view flexibility com-

bines, in an often uneasy way, the element of strategy with that of dealing with uncer-

tainties in the configurations of demand requiring rapid adaptation of resources [67].

From the classifications given in the literature a number of common themes emerge:

Flexibility is the ability to deal with variability and uncertainty; the sources of vari-

ability and uncertainty can be either planned or unplanned and due to internal or

external events; the ability to respond or be flexible should be measured in terms of

range and speed of response. They also study the costs and benefits of flexibility and

consider the utility of using flexibility to overcome weakness which could be addressed

in other ways.

Uncertainty is reasoned about indirectly in the meta-level control work described

in this dissertation. The complex scheduler reasons about uncertainty of domain ac-

tions explicitly. Also the slack parameter which determines the tightness of schedules

allows foe unexpected events. Internal uncertainty can be improved by studying the

performance characteristics of the control options in more detail. The uncertainty in

peer agent behavior is also reduced by negotiation with the other agents.
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2.2.1 Planning

Meta-level control has also been called meta-level planning. As this term implies,

an agent can plan not only the physical actions that it will take but also the com-

putational actions that it will take. On-line meta-level control uses computation to

explicitly decide which object level computations to perform. The central questions

are the types of decisions to be made and the algorithm used for making each de-

cision. For planning, the decisions arise from the choice points in non-deterministic

planning algorithms, and from deciding when to begin execution. Meta-level control

algorithms can be simple heuristics or a recursive application of the full planning

algorithm.

Stefik’s Molgen planner [73] uses the base level planner to create meta-level plans.

Molgen considers two levels of meta-level planning, in addition to base-level planning.

The actions at each of these meta-levels create plans for the next lower level. Molgen

does not reason about resource usage. In contrast, my approach uses only a single

layer of meta-level control, uses algorithms and heuristics tailored to making particu-

lar meta-level control decisions on resource trade-offs. Additional layers of meta-level

control have a diminishing rate of return since each layer adds additional overhead

and there is a bound on how much meta-level control can improve performance.

2.2.2 Decision Theory

Decision theory provides a measure of an agent’s performance that the meta-level

controller can use when making meta-level control decisions. Russell and Wefald

apply decision-theory and meta-level control to standard search problems. Their

DTA* algorithm [59] uses estimates of the expected cost and expected gain in utility

for possible computations to decide which computation to perform or whether to act.

The algorithm is myopic and considers only the implications for the next action to

be executed. Their method for deciding which node in the search tree to expand can
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be cast in terms of sensitivity analysis. The sensitivity analysis only considers the

effect of changing one variable at a time. Their work is defined in the context of

single agents and the meta-level decisions are independent and do not affect down-

stream decisions. This dissertation defines a sequential decision making problem

for multi-agent environments. The DTA* algorithm only considers the effect that

a computation will have on the value of the next action, while I consider the effect

on the value of an entire plan. The focus on plans rather than individual actions is

appropriate in domains where a sequence of actions is required to achieve a task and

the value of an action depends on the actions that will follow it.

2.2.3 Anytime Algorithms

In order to make the trade-offs necessary for effective meta-level control, the meta-

level controller needs some method for predicting the effect of more computation on

the quality of a plan. One method for doing this is to use a performance profile.

The idea comes from the study of anytime algorithms. Anytime algorithms can be

interrupted at any point to return a plan that improves with more computation [15].

The performance profile gives the expected improvement in a plan as a function of

computation time.

An alternative to using performance profiles is to use the performance of the

planner on the current problem to predict the future. Nakakuki and Sadeh use the

initial performance of a simulated annealing algorithm on a machine shop scheduling

problem to predict the outcome for a particular run [52]. They have found that

poor initial performance on a particular run of the algorithm is correlated with poor

final performance. This observation is used to terminate unpromising runs early and

restart the algorithm at another random initial state.

Anytime algorithms can be combined to solve complex problems. Zilberstein and

Russell [88] look at methods for combining anytime algorithms and performing meta-
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level control based on multiple performance profiles. Combining anytime algorithms

produces new planning algorithms that are also characterized by a performance pro-

file. Compilation techniques described in [89], can be used to compile programs

consisting of both anytime and traditional algorithms 2

Hansen and Zilberstein [30] extend previous work on meta-level control of anytime

algorithms by using a non-myopic stopping rule. It finds an intermediate strategy

between continuous monitoring and not monitoring at all. It can recognize whether

or not monitoring is cost-effective, and when it is, it can adjust the frequency of

monitoring to optimize utility. This work has significant overlap with the foundations

of the meta-level control reasoning framework described in this dissertation. It deals

with the single meta-level question of monitoring and considers the sequential effects

of choosing to monitor at each point in time. It keeps the meta-level control cost low

by using a lookup-table for the policy.

The meta-level control approach differs from the work on monitoring anytime

algorithms in that it deals with many different types of meta-level decisions that in-

teract that each other. This complicates the reasoning process. The environment is

also characterized by uncertainty in task arrivals, execution durations and utility dis-

tributions. Furthermore, the multi-agent aspect of my work adds another dimension

of complexity to the problem.

Harada and Russell [31] describe initial work where the computational process is

explicitly modeled. It provides initial ideas for using search as the model of compu-

tation in the Tetris domain. They propose the use of Markov Decision Processes and

reinforcement learning as their solution approach. This work was not pursued fur-

ther3. The methodology in this research was developed independently of their effort.

It was built for a complex domain where the meta-level decisions have down-stream

2The performance profile of a traditional algorithm is presumably a single step function.

3Personal communication with second author.
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effects. The domain is characterized by uncertainty in action durations and utility

accrued. The partial global planning [24] approach is a flexible framework for coor-

dination where nodes can balance their needs for predictability and responsiveness

differently for different situations. In this framework, nodes exchange information

about their tentative local plans and develop partial global plans (PGPs) to repre-

sent the combined activities of some part of the network that is developing a more

global solution. To dampen their reactions to deviations, nodes need to know when

deviations are negligible and should be ignored. The PGPlanner considers a deviation

between actual and predicted times to be negligible if that difference is no larger than

the time-cushion. The time-cushion is a user-specified parameter that represents

negligible time and balances predictability and responsiveness. My learning based

approach allows the agent to adjust its response dynamically based on its current

state.

COLLAGE [55] is a learning system that uses to meta-level information to learn to

choose the appropriate coordination strategy from among a class of strategies. They

provide empirical evidence for the benefits of learning situation-specific coordination.

Kuwabara [38] proposes a meta-level control mechanism for coordination protocols in

a multi-agent system. AgenTalk [39], a coordination protocol description language,

is extended to include primitives for the meta-level control. The meta-level control

mechanism allows agents to detect and handle unexpected situations by switching

between coordination protocols. These two systems choose a situation-specific strat-

egy from a number of options. However, they do not deal with the notion of bounded

rationality and do not account for the cost of meta-level control. They also limit their

work to coordination protocols and don’t consider other control activities.
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2.2.4 Reinforcement Learning

Algorithms for sequential Reinforcement Learning (RL) tasks have been studied

mainly within a single agent context [1, 77, 84]. Some of the later work described

below have applied RL methods such as Qlearning to multiagent settings. In many

of these studies, the agents learn about either simple dependent tasks or independent

tasks. Sen et al. [66] describe 2-agent block pushing experiments, where the agents

try to make the block follow a line by independently applying forces to it. Tan [79]

reports on grid-world predator-prey experiments with multiagent RL, focusing on the

sharing of sensory information, policies, and experience among the agents. Unfortu-

nately, just slightly harder predator-prey problems [64] and prisoner’s dilemma [63]

have uncovered discouraging results. The standard Q-learning algorithms are not

guaranteed to converge in non-stationary environments where all agents are learn-

ing simultaneously. The agents had to keep detailed accounts of their entire history

and interaction patterns, in addition to implementing long exploration schedules to

achieve convergence.

Crites and Barto [13] propose applying multiagent RL algorithms to elevator dis-

patching, where each elevator car would be controlled by a separate agent. The agents

don’t communicate with each other and an agent treats the other agents as a part of

the environment. The problem is complicated by the fact that their states that are not

fully-observable and they are non-stationary due to changing passenger arrival rates.

Littman and Boyan [47] describe a distributed RL algorithm for packet routing, using

a single, centralized Q-function, where each state entry in the Q-function is assigned

to a node in the network which is responsible for storing and updating the value of

that entry. In the research described in this dissertation, the entire Q-function, not

just a single entry, is stored by each agent. Littman [48] experiments with Q-learning

agents that try to learn a mixed strategy that is optimal against the worst possible

opponent in a zero-sum 2-player game.
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Weiss [85] presents Bucket Brigade based sequential RL experiments in a simple

blocks world problem. The cooperative agents with partial views share a goal but do

not know what the goal is. Tesauro [80] has successfully applied RL to Backgammon.

Shoham and Tenneholtz [68] describe a simple learning algorithm called Cumulative

Best Response that performs well in identical payoff settings but performs poorly

in the IPD. Despite some weak theoretical guarantees of eventual cooperation, in

practice, agents using this learning rule usually fail to reach cooperation in hundreds

of thousands of iterations.

Lagoudakis and Littman [40] describe a RL-based approach for dynamically se-

lecting the right algorithm for a given instance based on instance features while min-

imizing overall execution time. This problem has several interesting overlaps with

the meta-level control problem although they only reason about a single problem

instance at any point in time. The sequential nature of the decision process in this

dissertation complicates the reasoning process. Other multiagent learning research

has used purely heuristic algorithms for complex real-world problems such as learning

coordination strategies [74] and communication strategies [37] with varying success.

The meta-level control architecture described in this dissertation differs from the

above mentioned works in that it uses RL to make meta-level control decisions in a

complex sequential decision making, cooperative multiagent environment. It empha-

sizes the necessity for alternative ways of performing computations and it dynamically

reasons about the cost of computation based on the current context.

Many researchers in AI have addressed the need for abstractions to solve large-

scale planning problems. Abstraction is the process by which a system simplifies its

decision making process by choosing only the information relevant to decision mak-

ing process and ignoring the irrelevant information. In the RL literature, temporal

abstraction and hierarchical control have been used to combat the curse of dimen-

sionality in a principled way. The aim of hierarchical RL is to discover and exploit

41



hierarchical structure within a Markov decision problem. The options formalism of

Sutton, Precup and Singh [78] describes closed-loop policies for taking action over

a period of time. They show that options can be used interchangeably with primi-

tive actions in both planning methods and learning methods. The foundation of the

theory of options is provided by the existing theory of Semi-Markov Decision Pro-

cesses (SMDPs) and associated learning methods. Parr and Russell [54] developed

an approach to RL in which the policies considered are constrained by by hierarchies

of partially specified machines. This allows for the use of prior knowledge to reduce

the search space. The SMDP -based framework allows knowledge to be transferred

across problems and for component solutions to be recombined to solve larger and

more complicated problems. The MAXQ framework of Dietterich [21] relies on creat-

ing a hierarchy of SMDPs whose solutions can be learned simultaneously. He shows

that hierarchical RL using the MAXQ framework can be much faster and more com-

pact than flat RL. He also shows that recursively optimal policies can be decomposed

into recursively optimal policies of individual subtasks and these subtask policies can

be re-used wherever the same subtask arises.

These works and this dissertation work emphasize the importance and advantages

of abstraction in RL. The meta-level control work however is different from these

works because it uses abstract representation of the state based on the similarity of

states. In other words, A number of the agent’s real states are represented by a single

abstract state because of their similarity of their feature values (excluding time) which

is different from the temporal abstractions described in the above three works.
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CHAPTER 3

META-LEVEL CONTROL

Meta-level control is the process of optimizing an agent’s performance by choosing

and sequencing domain and control activities. First, the classic agent architecture

augmented with a meta-level control component is presented. This includes a de-

scription of the interaction among the various components in the architecture and

the agent’s ability to reason about control costs as first class entities. A high-level

representation of the state which captures the critical information while bounding

the computation required to process the state is also described. Finally, a detailed

example describing the functionality of an agent equipped with meta-level control

reasoning capabilities is presented.

3.1 Agent Architecture

The open agent architecture described in Figure 1.2 provides efficient meta-level

control for bounded rational agents. In this section, a detailed description of the

architectural components and their interactions is provided.

The components of the architecture are: the environment, the meta-level control

layer, control layer and the effector layer. The control layer consists of the different

schedulers and negotiation components. The effector layer is the execution subsystem.

Figure 3.1 shows the control flow within the architecture. In this complex ar-

chitecture, the control components such as the schedulers, negotiation components

and execution subsystem interact with the meta-level control component. Both the

meta-level and control components are involved in the agent decision making process.
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There are a number of data structures which help keep track of the agent’s state.

The NewTask List contains the tasks which have just arrived at the agent from the

environment. The Agenda List is the set of tasks which have arrived at the agent

but the reasoning about how to achieve the tasks has been delayed. They have not

been scheduled yet. The Schedule List is the set of high-level tasks chosen to be

scheduled and executed. The Execution List is the set of primitive actions which

have been scheduled to achieve the high-level tasks and maybe in execution or yet

to be executed. Examples of the decision making process corresponding to particular

agent states are provided later in the section.

The environment consists of a task generator which generates tasks for individual

agents based on an arrival model. The meta-level is invoked when a new task arrives

at the agent, even if the agent is in the midst of executing another task. The execution

subsystem or effector layer is invoked whenever the agent has to act upon the envi-

ronment. These actions may or may not have immediate rewards. When an action

completes execution, the execution subsystem sends the execution characteristics to

the meta-level controller which is also the monitoring subsystem.

The control layer consists of schedulers and negotiation protocols. The two sched-

ulers, simple and complex, differ in their performance profiles. Additionally, the

complex scheduler is parametrized so the effort level and amount of slack inserted

into a schedule can be varied.

Simple Scheduler: The simple scheduler is invoked by the meta-level controller

and receives the task structure and goal criteria as input. It uses the pre-computed

abstract information (aka task abstraction) about the task to select the appropri-

ate schedule which fits the criteria. A task abstraction in this dissertation is a data

structure which captures the information on the alternative ways of achieving the as-

sociated task. Task abstractions support reactive control for highly time-constrained

situations. When an agent has to schedule a task but doesn’t have the resources or
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time to call the complex domain-level scheduler, the pre-computed information about

the possible schedules of the task structure can be used to provide a reasonable but

often non-optimal schedule. The agent gathers knowledge about all tasks that it is

capable of executing by performing off-line analysis on each task. This off-line pro-

cess constructs potential schedules in the form of linear sequence of primitive actions.

Each sequence has associated performance characteristics such as expected quality

distribution, expected duration distribution, and expected duration uncertainty for

achieving the high level tasks. These performance characteristics are discovered by

systematically searching over the space of objective criteria. Examples of schedules

and their performance characteristics are provided in Appendix A. The task abstrac-

tion hides the details of these schedules and provides only the high level information

necessary to make meta-level choices. Figure A.3 describes examples of alternative

schedules produced by varying the objective criteria.

45



Complex Scheduler: The domain level scheduler depicted in the architecture

is an extended version of the Design-to-Criteria (DTC) scheduler [82]. A detailed

description of DTC and its schedules is given in Appendix A. Design-to-Criteria

(DTC) scheduling is the soft real-time process of finding an execution path through

a hierarchical task network such that the resultant schedule meets certain design

criteria, such as real-time deadlines, cost limits, and utility preferences. Casting the

language into an action-selecting-sequencing problem, the process is to select a subset

of primitive actions from a set of candidate actions, and sequence them, so that the

end result is an end-to-end schedule of an agent’s activities that meets situation

specific design criteria. If the meta-level action is to invoke the complex scheduler,

the scheduler component receives the task structure, objective criteria and a set of

scheduler parameters as input and outputs a satisficing schedule as a sequence of

primitive actions. A detailed description of the scheduler parameters are provided

later on in this section.

Adjustable autonomy is the capability of agents to dynamically vary their own au-

tonomy, by agreeing to perform tasks and also by transferring decision making control

to other agents as a result of coordination. Although the meta-level control architec-

ture described in this chapter was not constructed with adjustable autonomy as an

explicit first-class objective, it is a valuable feature that emerges as a consequence of

the resource-bounded nature of the problem being solved.

Negotiation Protocols: There are two types of negotiation protocols [45]: Neg-

Mech1 and NegMech2. The choice of the exact negotiation protocol will depend

on the relative gain of doing the associated task and the likelihood of the other agent

doing the task. The complexity of the negotiation protocol required is proportional to

the value of the negotiated task and availability of slack. The availability of slack in

the other agent is a good (but not always) reliable indicator of whether the requested

task can be accommodated in the agent’s schedule. NegMech1 is a single-shot ne-
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gotiation protocol that works in an all or nothing mode. A single proposal is sent

out and single response is received. It is inexpensive but has a lower probability of

success than the other negotiation protocol. NegMech2 is a multi-step negotiation

protocol which tries to achieve a commitment by a sequence of proposals and counter-

proposals until a consensus is reached or time runs out. It is more expensive than

the single-shot protocol in terms of the delays on when a negotiated task can start

and also the overheads for doing the computation and communication involved in the

negotiation but has a higher probability of success.

The Meta-Level Control (MLC) Layer is invoked when certain exogenous or

internal events occur. The controller computes the corresponding abstracted agent

state and determines the best action prescribed by the policy for that particular task

environment. There are five different approaches to determining the meta-level con-

trol policy: the simplest policy is a random policy, where a meta-level control action

is chosen at random independent of the current context; a deterministic policy which

always chooses the highest quality and possibly most expensive meta-level control

action independent of context; a simple hand-generated heuristic policy which dy-

namically adjusts to context although its reasoning is myopic in the case of the naive

heuristic strategy (NHS); a more complex heuristic policy based on task arrival infor-

mation in the case of the sophisticated heuristic strategy (SHS); and a automatically

learned policy based on a reinforcement-based learning strategy (RLS).

This architecture accounts for computational and execution cost at all three levels

of the decision hierarchy: domain, control and meta-level control activities. The cost

of domain activities is modeled directly in the task structures which describe the

tasks. Domain activities are reasoned about by control activities like scheduling.

Performance profiles of the various control activities are used to compute their costs

and are reasoned about by the meta-level controller. Meta-level control activities in

this architecture are modeled as activities with small yet non-negligible costs which
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are incurred by the computation of state features which facilitate the decision-making

process. These costs are accounted for by the agent, whenever events trigger meta-

level activity. The state features and their functionality are described in greater detail

in the next section.

The following are five events that are handled by the MLC and the corresponding

set of possible action choices. A brief description of the reasoning process was provided

in Chapter 1. Each of the external events and corresponding meta-level decisions

has an associated decision tree. The external action triggers a state change. The

response actions, execution of domain action or complex feature computation, are

also modeled in the decision tree. A description of how meta-level control allows for

adjustable autonomy implicitly is also provided with each of the five events described

below.

Arrival of a new task: When a new task arrives at the agent, the meta-level control

component has to decide whether to reason about it later; drop the task completely;

or do scheduling-related reasoning about an incoming task at arrival time and if so,

what type of scheduling - complex or simple. The decision tree describing the various

action choices named A1-A8 is shown in Figure 3.2. Scheduling actions have costs with

respect to scheduling time and decommit costs of previously established commitments

if the previous schedule is significantly revised or completely dropped. These costs

are diminished or avoided completely if scheduling a new task is postponed to a later

convenient time by adding it to the agenda of unscheduled tasks [A5] or completely

avoided if the task is dropped [A1]. The agent, in deciding not to commit to a new

task immediately, is implicitly choosing to retain its current level of autonomy in

terms of available resources. If a task is of high priority relative to other tasks in

execution or on the agenda, the meta-level controller might decide to use the complex

scheduler to schedule the task [A3]. If the new task is of high priority and the

currently executing schedule is also of high priority, the meta-level controller could
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decide to reschedule all the tasks using the detailed scheduler [A4]. If there are tight

constraints on scheduling the task, the simple scheduler could be invoked [A2]. The

agent, in the case of actions A2, A3 and A4, implicitly determines that it is more

valuable to give up varying amounts of its autonomy (depending on the priority of the

new task)and commit to processing the new task. The meta-level controller might

decide that it does not have enough information to make a good decision and will

consequently choose to spend more time in collecting features which will help with the

decision making process [A6]. The meta-level controller can hence choose to spend

more resources to make a better informed decision. After getting the additional state

information, the meta-level control will choose from one of the five possible choices

described earlier (A7-A11). 1

To elucidate this control process, instances of the state of agent Fred (described in

Chapter 1) and the corresponding decision choice made by the meta-level controller

are provided.

An example of the above described decision process occurs when the Fred is in

State S1. It represents the situation at time 2. Fred is in a wait state doing nothing

when a new task Analyze Rock, which arrives at time 1 with a deadline of 40, is added

to the NewTaskList. Fred’s meta-level controller is invoked. All the other lists are

empty and Fred has not executed any task and has accrued zero utility. Based on its

current state, Fred’s meta-level control decision is to Call the Detailed Scheduler.

State S1:
CurrentTime : 2

1The cost of computing complex features for the experiments described in this dissertation is
assumed to be low when compared to the cost of scheduling actions. This was done to test the
effectiveness of these features on all the decision choices that succeed them. The cost of the com-
puting complex features can be significantly higher than the cost of other control actions in certain
domains. In those domains, it might be appropriate to reduce the number of options available after
the information gathering action. For instance, if the cost of simple scheduling is 2 units and the
cost of computing complex features is 4 units, it might not be sensible to do simple scheduling after
computing complex features. The resources invested in computing the the complex features make
only the detailed scheduling option worthwhile and not the simple scheduling option, if the choice
is to schedule the task
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Figure 3.2. Decision tree when a new task arrives

NewTaskList : AnalyzeRock< 1, 40 >; AgendaList : φ

ScheduleList: φ; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 0.0
Meta-Level Control Decision : Call Detailed Scheduler

Here is another instance of the meta-level control decision process where Fred is

in state S5 and it is time 16. A new task Explore Terrain arrives at time 15 with

a deadline of 80. The new task is added to the NewTask List and Fred’s meta-level

controller is invoked. Fred is in the midst of executing method Focus Spectrometer on

Rock, which has executed for 2 time units. The current schedule has gained 6.0 utility

points and Fred has gained a total of 6.0 utility points also. Based on its current state,

Fred’s meta-level control decision is to Delay Explore Terrain task and to add it to

the Agenda List instead. Fred will continue execution of method Focus Spectrometer

on Rock. When execution of this method is completed and if the NewTask List is

empty, Fred will automatically make meta-level control decision on all the tasks in

the Agenda List.
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State S5:
CurrentTime :16
NewTaskList : ExploreTerrain < 15, 80 >; AgendaList : φ

ScheduleList: φ; ExecutionList : {FocusSpectrometeronRock exe}
InformationGathered : φ

Utility of current schedule : 6.0; Duration of current schedule : 8.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 6.0
MLC Decision : Add New task to agenda

Invocation of the detailed scheduler: The parameters to the planner/scheduler are

scheduling effort (E) and slack amount (S). They are determined based on the current

state of the agent including characteristics of the existing schedule and the set of new

tasks that are being scheduled. The effort parameter determines the amount of com-

putational effort that should be invested by the planner/scheduler. The parameter

can be set to either HIGH, where a high number of alternative plans/schedules are

produced and examined or LOW, where pruning occurs at a very early stage and

hence few alternative plans/schedules are compared, reducing the computational ef-

fort while compromising the optimality of the schedule. The effort is proportional

to the expected utility and complexity (in terms of number of possible alternative

plans ) of the task. It is also inversely proportional to the autonomy of the agent,

meaning, the agent chooses to give up more of its autonomy when it chooses higher

effort alternatives. Although, the effort can be any discrete value, two qualitative

values are used in the current implementation of the agent. These two values were

sufficient to show the importance of varying the effort based on problem solving con-

text. Depending on the problem domain, one could increase and decrease the number

of feature values and the decision process will handle them appropriately.

The slack parameter determines the amount of flexibility available in the schedule

so that unexpected events can be handled by the agent without it detrimentally af-

fecting its expected performance characteristics. The amount of slack to be inserted

depends on three factors, the amount of uncertainty in the schedule, the importance
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Figure 3.3. Decision tree for invoking the scheduler

of the currently scheduled tasks and the expected amount of meta-level control activ-

ity that will occur during the duration of the schedule. The scheduler determines the

amount of uncertainty in the schedules it builds and automatically inserts slack to

handle highly uncertain primitive actions. The meta-level control component uses in-

formation about the arrival of future tasks to suggest slack amounts to the scheduler.

This information is readily available to the sophisticated heuristic meta-level control

strategy. The naive heuristic strategy uses a simple method of predicting arrival char-

acteristics of future tasks based on past task arrival characteristics and is described in

the next section. Three slack values of 10%, 30% and 50% of the total available time

are used in the current implementation of the agent. These values, like in the case

of the effort, can be varied as needed. The amount of slack implicitly determines the

autonomy of the agent. The greater the amount of slack in the schedule, the greater

the level of autonomy since the agent has the flexibility of determining how to use its

resources.

The decision tree describing the various action choices for this meta-level decision

is shown in Figure 3.3. Each of the choices in the decision tree are combinations of

possible effort and slack values.
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An example of this type of decision process occurs when Fred is in state S2 and

the time is 3. The new task Explore Terrain is to be scheduled using the detailed

scheduler. Fred’s meta-level controller is invoked. Since there are no other tasks to be

considered, the meta-level controller makes the following decision about parameters:

EffortLevel= 2 meaning the scheduler effort should be set to HIGH and Slack of 10%,

which means 10% of the total time allowed for the task in the schedule will be used

for slack.

State S2:
CurrentTime : 3
NewTaskList : φ ; AgendaList : φ

ScheduleList: AnalyzeRock < 1, 40 >; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 0.0
MLC Decision : Parameters for Detailed Scheduler are EffortLevel=2; Slack=10%

Presence of task requiring coordination in current task set: Suppose there is a

subtask or method in the currently scheduled task set which either requires a non-

local method to enable it or should be sub-contracted out to another agent. The local

agent has to decide whether it is worth its while to even initiate negotiation and if

so, which negotiation protocol to use. The decision tree associated with this meta-

level decision is described in Figure 3.4. This decision is made using the MetaNeg

information described below.

Coordination actions are split into an external information gathering phase and a

negotiating phase, with the outcome of the former enabling the latter. The negotiation

phase can be achieved by choosing from a family of negotiation protocols [45]. The

information gathering phase facilitates the negotiation phase and is modeled as a

MetaNeg method in the task structure (see Figure 3.8) and the negotiation methods

are modeled as individual primitive actions. Thus, reasoning about the costs of

negotiation is done explicitly, just as it is done for regular domain-level activities.
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Figure 3.4. Decision tree on whether to negotiate and effort

The MetaNeg method belongs to a special class of domain actions which request

an external agent for a certain set of information that does not require any significant

use of local processor time. It queries the other agent and returns information such as

expected utility of other agent’s schedule, expected completion time of other agent’s

schedule, and amount of slack in the other agent’s schedule. This information assists

the meta-level controller in its decision making process.

When an agent decides to negotiate with another agent and abide by the results of

the negotiation, it is effectively making a decision to relinquish some of its autonomy.

The agent will have to reason about its tasks based not only on local constraints but

also based on constraints that are outcomes of the negotiation action.

The following is an instance where Fred is in state S10 at time 30. The new task

Explore Terrain which arrived at time 15 with deadline 80 has been scheduled and

the schedule is in the Execution List. Fred’s meta-level controller is invoked. �Fred

decides to begin execution of the Information Gathering Action (MetaNeg) in parallel

with the ExamineTerrain action.

State S10:
CurrentTime :30
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{MetaNeg,NegMech2, ExamineTerrain,CollectSamples}
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InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 18.0
MLC Decision : Begin execution of Information Gathering Action (MetaNeg)
in parallel with ExamineTerrain

The following is an instance where Fred is in state S11 at time 33. The Information

Gathering Action (MetaNeg) completes execution and Fred’s meta-level controller is

invoked. The following information is returned by the information gathering action:

Agent Barney is executing high utility tasks, has deadlines which are far off and

has a high amount of slack. Based on this information, Fred decides that it should

negotiate with Barney using the NegMech2 protocol about the completion time of

Barney’s method Arrive at Location.

State S11:
CurrentTime :33
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{NegMech2, ExamineTerrain,CollectSamples}
InformationGathered : < HIGH,HIGH,HIGH

Utility of current schedule : 0.0; Duration of current schedule : 1.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 18.0
MLC Decision : Choose NegMech2 and continue

Domain action completes execution: When a primitive action is completed, the

meta-level controller checks to see if the real-time performance of the current schedule

is as expected. If the actual performance deviates from expected performance by

more than the available slack time, then a reschedule may be initiated. A decision

to reschedule helps in two ways: it would preclude the agent from reaching a bad

state in which too many resources are spent on a schedule with bad performance

characteristics; and it would allow for meta-level activities to be processed without

the detrimental effects such processing would have on domain activities if slack is

minimal. When an agent decides to reschedule, it is also choosing to relinquish its

autonomy and use of resources to re-process the task. Hansen’s work [30] on meta-

level control of anytime algorithms using a non-myopic stopping rule is described
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Figure 3.5. Decision tree when a domain action completes execution

in Chapter 2. It finds an intermediate strategy between continuous monitoring and

not monitoring at all. It can recognize whether or not monitoring is cost-effective,

and when it is, it can adjust the frequency of monitoring to optimize utility. The

decision to reschedule in this work can be viewed as a non-myopic stopping rule

within Hansen’s work. The decision tree associated with this meta-level decision is

described in Figure 3.5.

The following is an instance where Fred is in state S4 and the time is 13. The new

task Analyze Rock has been scheduled. The first action in the schedule Get To Rock

Location has been completed successfully with a utility of is 6.0. Fred’s meta-level

controller is invoked to do a quick check to find out if the execution characteristics

of this action is as expected. Since the performance is as expected, the meta-level

controller decides the schedule can continue execution and the next action on the

schedule FocusSpectrometeronRock begins execution.

State S4:
CurrentTime :13
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList : {FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 6.0; Duration of current schedule : 8.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
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Total Utility accrued : 6.0
MLC Decision : No Reschedule; Begin Execution of FocusSpectrometeron-
Rock

Negotiation process fails to reach a commitment: Suppose there is a subtask or

method in the currently scheduled task set which has been negotiated about with

a non-local agent and suppose the negotiation fails. The local agent should decide

whether to renegotiate and if so, which protocol should it use. Figure 3.6 describes

the associated decision tree. When the agent decides to renegotiate, just like in the

case of previous decision to negotiate, the agent is choosing to relinquish some of its

autonomy to constraints determined by other agents.
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Figure 3.6. Decision tree on whether to renegotiate upon failure of previous nego-
tiation

The following is an instance where Fred is in state S15, the time is 46 and method

NegMech2 has completed execution. Fred’s meta-level controller is invoked. The

results of the negotiation is that agent Barney will complete its method Arrive at

Location at time 65 and this means Fred’s method Collect Samples can begin execution

at this time. The earliest start time for this method is noted as such and the meta-

level controller determines that execution of the current schedule can continue without

changes.
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State S15:
CurrentTime :46
NewTaskList : φ; AgendaList : φ

ScheduleList: φ;
ExecutionList :{ExamineTerrainexe, CollectSamples,

GettoRockLocation, FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 1.0; Duration of current schedule : 7.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 3.0;
Total Utility accrued : 19.0
MLC Decision : NegMech2 completes with a commitment that method Col-
lectSamples will be enabled at time 65. Continue execution of ExamineTer-

rain

This architecture and control flow provides the agent the capability to adapt to

changing conditions in an unpredictable environment. This is explained in greater

detail in the next section, Moreover, the architecture is open in that the modules

belonging to the various layers can be replaced by modules with better performance

characteristics and the advantages of the architecture will still hold true.

A detailed execution trace of Fred’s behavior in a particular scenario is provided

in Appendix B.

3.2 Agent State

The meta-level controller uses the current state of the agent to make appropriate

decisions. In this dissertation, a distinction is made between the current state of

the agent (also called real state) and the abstract representation of the state which

captures only the critical information about the current state.

The real state of the agent has also the detailed information related to the agent’s

decision making and execution. It accounts for every task which has to be reasoned

about by the agent, the execution characteristics of each of these tasks, and informa-

tion about the environment such as types of tasks arriving at the agent, frequency

of arrival of tasks and the deadline tightness of each of these tasks. The real state

is is continuous and complex. This leads to a combinatorial explosion in the real
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state space even for simple scenarios. The complexity of the real state is addressed

by defining a abstract representation of the state which captures the important qual-

itative state information relevant to the meta-level control decision making process.

There are twelve features in the abstract representation of the state and each feature

can have one of four different values. So the maximum size of the search space is

412 = 224, which is about a million states.

3.2.1 Abstract Representation of the State

The overhead of meta-level control activities is accounted for by the cost of state

feature computation. The twelve features, which are of two categories - simple fea-

tures where the reference values are readily available by simple lookups and complex

features which involve significant amount of computation to determine their values.

Simple features help the agent make informed decisions on executable actions or

whether to obtain more complex features to make the decisions. An example of a

simple feature would be the availability of slack in the current schedule. If there is

a lot of slack or too little slack, the decision to accept the new task or drop the new

task respectively is made. However, if there is a moderate amount of slack, the agent

might choose to obtain a more complex feature, namely computing the relation of

slack fragments which is described below.

Complex features usually involve computations that take time that is sufficiently

long that, if not accounted for, will lead to incorrect meta-level decisions. The compu-

tation of the complex features is cumbersome since they involve determining detailed

timing, placement and priority 2 characteristics and provide the meta-level controller

with information to make more accurate action choices. For instance, instead of hav-

ing a feature which gives a general description of the slack distribution in the current

schedule i.e. there is a lot of slack in the beginning or end of the schedule, there

2Priority accounts for quality and deadline.
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is a feature which examines the exact characteristics of the new task and makes a

determination whether the available slack distribution will likely allow for a new task

to be included in the schedule. The agents make explicit meta-level control decisions

based on whether to gather complex features and determine which complex features

are appropriate.

In Section 1.3, a formal definition of the meta-level control problem was presented.

The abstract representation of the state defined in this section will be the states in

the Markov Decision process model. The control actions defined in section 3.1 will

the actions in the MDP model. The probability transition function and the reward

function will be determined by collecting data and estimating and learning them from

the experience gained from the data.

3.2.2 Choosing State Features

The following are some characteristics of state features which allow for effective

meta-level control in the task allocation domain described here.

1. Information on the status of tasks currently being processed and those which

need future processing. Example: NewTaskList, AgendaList, ScheduleList, Ex-

ecutionList

2. Parameters of the objective function which should be maximized. Example:

Utility of tasks

3. Parameters of the objective function which should be minimized. These include

all the bounded resources of the environment. Example: Deadlines, Durations,

Cost of tasks

4. Information on the environmental model if available. Example: Probability of

arrival of tasks, task types and their deadline tightness

5. Parameters which affect the action choices. Example: Slack in the schedules

60



FeatureID Feature Complexity

F0 Status of Lists Simple
F1 Utility goodness of new task Simple
F2 Deadline tightness of a new task Simple
F3 Utility goodness of current schedule Simple
F4 Deadline tightness of current schedule Simple
F5 Arrival of a valuable new task Simple
F6 Amount of slack in local schedule Simple
F7 Amount of slack in other agent’s schedule Simple
F8 Deviation from expected performance Simple
F9 Decommitment Cost for a task Complex
F10 Relation of slack fragments in local schedule to new task Complex
F11 Relation of slack fragments in non-local agent to new task Complex

Table 3.1. Table of proposed state features, their description and category

6. Parameters which are computed based on real time performance. Example:

Deviation from expected performance, Cost of decommiting from existing tasks

7. Information on other agents which influence local decisions. Example: Utility

of tasks of other agents, Deadline Tightness of tasks belonging to other agents,

Slack in schedules of other agents

Table 3.1 enumerates the features of the abstract representation of the state used

by the meta-level controller. The default value or each of the features is NONE.

F0: Status of Lists This is a simple feature which described the current status

of all the lists the agent has to reason about. It is represented as a 4-tuple with the

following entries: NewItemsList, Agenda, ScheduleList, ExecutionList, where each

entry in the tuple contains the number of items on the corresponding list.

For example, < 2, 0, 0, 1 > means there are two new items which have arrived from

the environment and there is one task in execution.

F1: Utility goodness of new task: It is a simple feature which describes

the utility of a newly arrived task based on whether the new task is very valuable,
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moderately valuable or not valuable in relation to other tasks being performed by the

agent. The assigned feature values are HIGH, MEDIUM and LOW respectively.

F2: Deadline tightness of a new task: It is a simple feature which describes

the tightness of the deadline of a particular task in relation to expected deadlines of

other tasks. It determines whether the new task’s deadline is very close, moderately

close or far in the future. The assigned feature values are TIGHT, MEDIUM, LOOSE

respectively.

F3: Utility goodness of current schedule: It is a simple feature describes

the utility of the current schedule normalized by the schedule length and is based on

information provided by the scheduler. This feature determines whether the current

schedule is very valuable, moderately valuable or not valuable with respect to other

tasks and schedules. The assigned feature values are HIGH, MEDIUM and LOW

respectively.

F4: Deadline tightness of current schedule: It is a simple feature which

describes the deadline tightness of the current schedule in relation to expected dead-

lines of tasks in that environment. If there are multiple tasks with varying deadlines

in the schedule, the average tightness of their deadlines is computed. It determines

whether the schedule’s deadline is very close, moderately close or far in the future.The

assigned feature values are TIGHT, MEDIUM, LOOSE respectively.

F5: Arrival of a valuable new task: It is a simple feature which provides

the probability of a high utility, tight deadline task arriving in the near future by

using information on the task characteristics like task type, frequency of arrival and

tightness of deadline. It can take on the values of HIGH, MEDIUM, LOW.

F6: Amount of slack in local schedule: It is a simple feature which provides

a quick evaluation of the flexibility in the local schedule. Availability of slack means

the agent can deal with unanticipated events easily without doing a reschedule. The

cost of inserting slack is that the available time in the schedule is not all being used
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to execute domain actions. This feature can take on the values of HIGH, MEDIUM,

LOW.

F7: Amount of slack in other agent’s schedule: This is a simple feature

used to make a quick evaluation of the flexibility in the other agent’s schedule. This

is used when an agent is considering coordinating with the other agent to complete a

task. This feature can take on the values of HIGH, MEDIUM, LOW.

F8: Deviation from expected performance: This is a simple feature which

uses expected performance characteristics of the schedule and the current amount of

slack (F6) to determine by how much actual performance is deviating from expected

performance. The feature can take on the values of HIGH, MEDIUM, LOW.

F9: Decommitment Cost for a task: This is a complex feature which esti-

mates the cost of decommiting from doing a method/task by considering the local

and non-local down-stream effects of such a decommit. This feature can take on the

values of HIGH, MEDIUM, LOW.

F10: Relation of slack fragments in local schedule to new task: This

is a complex feature which determines the feasibility of fitting a new task given the

detailed fragmentation of slack in a particular schedule. It involves resolving detailed

timing and placement issues. This feature can take on the values of HIGH, MEDIUM,

LOW.

F11: Relation of slack fragments in non-local agent to new task: This

is a complex feature which determines the feasibility of fitting a new task given the

detailed fragmentation of slack in a particular non-local schedule. This feature can

take on the values of HIGH, MEDIUM, LOW.

Each of the state features takes on qualitative values such as high, medium and

low. The quantitative values such as utility of 80 versus utility of 60 are classified into

these qualitative buckets (high versus medium utility) in a principled way as shown

later in this section. As will be seen in the experimental results in later chapters,
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these qualitative measures provide information that can be exploited to make effective

meta-level control decisions.

3.2.3 Computation of State Features

The following is a formal description of how the low-level system parameters de-

termine the high-level features of the agent state.

Definition 1: The multi-agent system M is a collection of n heterogeneous agents.

Each agent α has a finite set of tasks T which arrive in a finite interval of time. NCT

is the total number of tasks that have arrived at the system from the start to current

time CT . Let t ε T be a single task under consideration

Definition 2: A task t upon arrival has an arrival time ATt and a deadline DLt

associated with it. A task t can be achieved by one of various alternative ways(plans)

tj, tj+1, tj+2...tk.

Definition 3: A plan tj to achieve task t is a sequence of executable primitive

actions tj = {m1, m2, ...mn}. Each plan tj has an associated utility distribution UDtj

and duration distribution DDtj .

Example: T1A and T1B are two alternate plans to achieve task T1.

(25% 22 50% 50 25% 100) is the duration distribution of T1A, which means that plan

T1A takes 22 units of time 25% of the time, 50 time units 50% of the time and 100

time units 25% of the time. Also T1A has a utility distribution of (10% 30 90% 45).

T1B has a duration distribution (50% 32 30% 40 20% 45) and utility distribution of

(25% 20 75% 30).

UDT1A = (10% 30 90% 45)

DDT1A = (25% 22 50% 50 25% 100)

UDT1B = (25% 20 75% 30)

DDT1B = (50% 32 30% 40 20% 45)

64



Definition 4: CTt is the time required for scheduling a task t if it is chosen for

scheduling.

Example : CTt is 2 units if simple scheduling is chosen, if detailed scheduling is

chosen, the cost is 4 units if the scheduling set has less than 5 primitive actions to

evaluate, 12 units if the scheduling set has between 5 and 10 primitive actions to

evaluate and 18 units if the scheduling set has more than 10 primitive actions.

System execution is single threaded allowing for one primitive action at the most

to be in execution at any time. If a meta-level action is required when a primitive

action m is executing, the execution is interrupted and control is turned over to the

meta-level controller. When the meta-level control action is completed, execution of

m is always resumed.

Definition 5: Rm is the remaining time required for primitive action m to com-

plete execution.

Definition 6: The earliest start time ESTt for a task t is the arrival time ATt

of the task delayed by the sum of Rm, the time required for completing the execution

of the action m which is interrupted by a meta-level control event and CTt, the time

required for scheduling the new task.

ESTt = ATt + Rm + CTt

Definition 7: The maximum available duration MDt for a task t is the difference

between the deadline of the task and its earliest start time.

MDt = DLt − ESTt

Example: Suppose T1 arrives at time 45 and has a deadline of 100. Also suppose the

execution of method m is interrupted by the arrival of T1 and m still needs about

8 time units to complete execution. Suppose the time spent on scheduling T1 is 5
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units. Then the maximum available duration for task T1 is 100 − 45 − 8 − 5 = 42

time units. The meta-level controller is aware that the entire range of the maximum

available duration is not always available solely for the execution of this task. When

the maximum available duration ranges of a number of tasks overlap, the maximum

duration available for a particular task is effectively reduced.

Definition 8: Given a task t and its maximum available duration MDt, the

probability that a plan tj meets its deadline PDLtj is the sum of the probabilities

of all values in the duration distribution of plan tj which are less than the task’s

maximum available duration.

PDLtj =
n

∑

j=1

pj

100
: ((pj% xj) ε DDtj) ∧ (xj < MDt)

Example: Suppose the maximum available duration for task T1 is 42. There is only

one duration value in DDT1A which has a value less than 42 and that value is 22 and

occurs 25% of the time.

PDLT1A =
25

100
= 0.25

There are two duration values in DDT1B which have a value less than 42 and they

are 32 and 40 which occur 50% and 30% respectively in the distribution.

PDLT1B =
50 + 30

100
= 0.8

Definition 9: The expected duration EDtj of a plan tj, is the expected duration

of all values in the duration distribution of plan tj which are less than the maximum

available duration for the task.

EDtj =

∑n
j=1

pj

100
∗ xj

PDLtj
: ((pj% xj) ε DDtj) ∧ (xj < MDt)
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Example: For the above constraint where the maximum available duration for task

T1 is 42

EDT1A =
( 25

100
∗ 22 )

0.25
= 22

EDT1B =
( 50

100
∗ 32 + 30

100
∗ 40)

0.8
= 35

Definition 10: The expected utility EUtj of a plan tj, is the product of the prob-

ability that the alternative meets its deadline and the expected utility of all values in

the utility distribution of alternative tj.

EUtj =
n

∑

j=1

PDLtj ∗
pj

100
∗ xj : ((pj% xj) ε UDtj )

Example: When the maximum available duration for task T1 is 42,

EUT1A = 0.25 ∗
10

100
∗ 30 + 0.25 ∗

90

100
∗ 45 = 10.875

EUT1B = 0.8 ∗
25

100
∗ 20 + 0.8 ∗

75

100
∗ 30 = 22

Definition 11: Given the maximum available duration for a task, the preferred

alternative ALTt for a task t is the alternative whose expected utility to expected

duration ratio is the highest. ALTt is the alternative which has the potential obtain

the maximum utility in minimum duration within the given deadline.

ALTt = tj :
n

max
j=1

EUtj

EDtj

Example: Suppose the maximum available duration for task T1 is 42. Consider each

of T1’s alternative plans which were described earlier. Plan T1A’s expected utility to

expected duration ratio is 10.875
22

= 0.494 and plan T1B’s expected utility to expected
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duration ratio is 22

35
= 0.629. So the alternative with the maximum expected utility

to expected duration ratio is T1B

ALTT1 = T1B

Definition 12: The utility goodness UDt of a task t is the measure which de-

termines how good the expected utility to expected duration ratio of a task’s preferred

alternative is in relation to the expected utility to expected duration ratio of the pre-

ferred alternatives of all the other tasks which arrive at the system. The tasks with

high utility are the tasks which are in the 66th percentile(top 1/3rd) of the expected

utility to expected duration ratio of the task’s preferred alternative.

UDt =































HIGH,
EUALTt

EDALTt

is above the 66th percentile

MEDIUM,
EUALTt

EDALTt

is between the 66th and 33rd percentile

LOW, otherwise

Example: The utility goodness of task T1 given a deadline of 100 and a maximum

available duration of 42 is 22

35
= 0.628 which lies above the 66th percentile. UDT1 =

HIGH

Definition 13: There are some tasks which do not accrue utility uniformly, in-

stead they get the total utility for the task only when execution of the task completes.

Such tasks are called 0-1 utility tasks. The utility goodness of a 0-1 utility task in

execution UDexe
t of a 0-1 utility task t is the measure which determines how good the

expected utility to remaining duration (Rt for task t at time CT) ratio of the task’s

preferred alternative is in relation to the expected utility to expected duration ratio of

the preferred alternatives of all the other tasks which arrive at the system.
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UDexe
t =































HIGH,
EUALTt

RALTt

is above the 66th percentile

MEDIUM,
EUALTt

RALTt

is between the 66th and 33rd percentile

LOW, otherwise

Definition 14: The deadline tightness TDt of a task t measures the flexibility of

the maximum available duration. It determines by how much the maximum available

duration can be reduced by unexpected meta-level activities and similar delays and

the system can still guarantee the same performance characteristics of the preferred

alternative for the task. Suppose a meta-level activity on average has an expected

duration of CML. The expected amount of time required for handling unexpected

meta-level activities CMLt, during the execution of task t, is computed as follows:

CMLt = CML ∗
NCT

CT
∗ MDt

Example: Suppose the average time per meta-level activity is 2 units, 4 tasks have

arrived at the agent and the current time is 60. MDt is 42 as determined previously.

CMLT1 = 2 ∗ 4

60
∗ 42 = 5.6 The amount of time expected to be spent on future

meta-level activities is 5.6 units.

In order to determine if a given deadline is tight, the proposed maximum available

duration, MDX
t for a proposed scenario X is computed. It is the maximum available

duration which also accounts for the anticipated meta-level costs of future activities.

MDX
t = MDt − CMLt

Example: From the previous example, the MDX
T1 = 42 − 5.6 = 36.4

The related parameters PDLX
ALT t

, EDX
ALT t

, EUX
ALT t

and the expected utility to

expected duration ratio
EUX

ALTt

EDX
ALTt

for the proposed scenario are also recomputed with

respect to the redefined MDX
t .
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Example: Following through with the example described above, the new param-

eter values are:

PDLX
T1B = 0.5, EDX

T1B = 32, EUX
T1B = 11.25, UDX

T1 =
EUX

T1B

EDX
T1B

= 0.3451

The expected utility to expected duration ratio now falls below the 33rd percentile,

UDX
T1 = LOW

TDt =































TIGHT, (UDt = HIGH) ∧ (UDX
t 6= HIGH

LOOSE, (UDt = HIGH) ∧ (UDX
t = HIGH)

MEDIUM, ∀ other values of UDt, UDX
t

Example: Since (UDT1 = HIGH) ∧ (UDX
T1 = LOW ), the time spent on unexpected

meta-level control activities is detrimental to task t’s utility gain, which in turn means

its deadline is tight.

TDT1 = TIGHT

Definition 15: The high priority task set for an agent α HPTSα is the set of

tasks whose utility goodness is HIGH and deadline tightness is TIGHT.

HPTSα = {Tk} : (UGk = HIGH) ∧ (TDk = TIGHT )

Example:

HPTSA = {T1}

Definition 16: The arrival rate of high priority tasks for an agent α, ARTα, is

the ratio of the number of high priority tasks that arrive at the system to the total

number of tasks n that have arrived at the system.

ARTα =
|Tk|

n
: Tk ε HPTSα
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Definition 17: The probability of a high priority task arriving in the near future

PHTα depends on the arrival rate of high priority tasks. The intuition behind this

relation is that the characteristics of tasks that arrived in the past can be used to

predict the characteristics of tasks that will arrive in the near future. The assumption

made by the system that the past information can be used to predict the future is a

valid assumption since the environment is stationary for a finite-horizon.

For instance, if ARTα is less than 0.04 (arrival rate is less than 4%), then PHTα

is also low.

PHTα =































LOW, ARTα < 0.04

MEDIUM, 0.04 <= ARTα < 0.10

HIGH, ARTα >= 0.10

Definition 18: The slack in the schedule SLACKscur, is the total amount of

flexibility that should be inserted in the schedule so that unexpected meta-level activities

and uncertainty in method execution durations of all the tasks being scheduled can be

accommodated without expensive rescheduling control actions.

The cost of unexpected meta-level activities is CMLt which was previously de-

fined. The uncertainty in method durations is handled by the complex scheduler

which reasons about uncertainty.

SLACKscur =
∑

∀tεscur

CMLt

The slack is defined using a simple slack distribution strategy, where the duration

of each method in the schedule is extended by equal fractions of the total slack.

SLACKt
scur is the slack remaining in the midst of a schedule scur’s execution at

time t.

Definition 19: The expected utility of the current schedule scur (EUscur) is pro-

vided by the domain scheduler when it completes constructing a schedule. The in-
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formation on the expected duration of the schedule EDscur, which is the sum of the

execution durations of the primitive actions in the plan, is also provided by the sched-

uler. The expected start time of the schedule ESTscur and expected finishing time of

the schedule EFTscur are also provided by the domain scheduler.

The following is an example of a meta-level decision making scenario occurring in

the system..

Scenario: Suppose a new task t arrives when the agent α is in the midst of

executing actions from the current schedule scur.

Meta Level Action: If there is a high probability that the scheduler will not select

any plan to execute the new task, then the meta-level control will choose to drop

the task even before it is sent to the scheduler to avoid the cost of scheduling. The

scheduler will not create a plan for executing a task t if it determines that the utility

obtained from excluding the task is higher than the utility obtained by including the

task in the schedule.

Heuristic 1: The probability of the scheduler not selecting any of the alternative

plans for a new task for execution can be high for one or more of the following reasons:

1. There is no alternative for the task whose expected duration is less than the

task’s maximum available duration. This means the deadline is so tight that

there is no way to complete the task within the deadline.

∀j, PDLtj = 0.0

2. The expected utility of the current schedule is much higher than the expected

utility of the new task. Also the expected deadline of the current schedule is

tight enough that any alterations in the schedule could result in the expected

quality to be seriously depleted due to missed deadlines and broken commit-

ments,
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(TDt = TIGHT ) ∧ (
EUscur

EDscur

�
EUt

EDt

) ∧ (EDt � SLACKscur)

Heuristic 2: Samuelson [62], states that the opportunity cost of a decision arises

because choosing one thing in a world of scarcity means giving up something else.

Opportunity cost(OC) is defined as the value of the good or service foregone. The

opportunity cost of (re)scheduling is too high if one or more of the following occur

1. The time spent on execution of the control action(scheduling) the new task

delays the execution of previously scheduled domain actions. These delays could

result in broken commitments, missed deadlines and lowered utilities which

contribute to the cost of the delays. If the cost of these delays are much higher

than the expected benefits of the scheduling action, then the opportunity cost

of rescheduling is too high.

If CT is the current time and t is the new task being scheduled, then OC is too

high if the scheduling event causes the task to use more slack than was allocated

making the tasks in the previously existing schedule to miss their deadline. The

slack allocated amount can be insufficient if primitive actions take significantly

longer execution durations than expected and also if there are significantly more

number of meta-level events than expected for that time interval

(
EUscur

EDscur

�
EUt

EDt

) ∧ (Ct >> SLACKCT
scur)

2. The time spent on scheduling and switching contexts from the control layer to

meta-level control layer could lead to the delay of meta-level control decisions

on other potentially high priority tasks which arrive during that time period.

This delay could result in lowered utilities from the latter tasks. If the gain from

the scheduling action is less than the loss of utility from other control actions,

then the opportunity cost of the scheduling action is too high.
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Suppose, a new task arrives t and the agent α isn’t executing a schedule, then

the OC to schedule the new task is too high if the is probability of high priority

tasks arriving during the scheduling duration is significantly high.

(TDt = T ight) ∧ (PHTα = HIGH)

3.3 Detailed Execution Trace of Fred’s Decision Making Pro-

cess

In order to clarify the details of the approach, a detailed time-line execution trace

of a sample run of the example in Chapter 1 is provided. It provides a detailed view

of the meta-level reasoning process of agent Fred based on abstract state features. It

describes how the different components of the architecture interact with each other

and details the various meta-level and control-level decisions taken for a particular

set of environmental conditions. Agent Fred’s tasks are described in Figure 1.6.

Suppose that along with information of the task structures, agent Fred also receives

abstractions of tasks AnalyzeRock and ExploreTerrain. Abstractions for the tasks are

described in the following table.

Fred will address several of the meta-level decisions listed below:

1. Should the method CollectSamples of task ExploreTerrain which is enabled by

Barney be included in Fred’s schedule? This will determine the choice of the

abstract alternative.

2. Should Fred reason about incoming tasks at their arrival times or later?

3. What extent of reasoning should be invested in each task? Should it involve a

reschedule action?

4. When a decision is made to schedule a task or set of tasks, the following pa-

rameters need to be determined. Where is it most appropriate to include slack
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Alternative Method Sequence EU ED NCT

AnalyzeRock1 {GettoRockLocation} 6 8 0

AnalyzeRock2 { FocusSpectrometeronRock} 10.2 10.2 0

AnalyzeRock3 {GettoRockLocation,

FocusSpectrometeronRock}
16.2 18.2 0

ExploreTerrain0 {ExamineTerrain} 12 8 0

ExploreTerrain1 {MetaNeg,NegMech1,
CollectSamples}

12.6 16.2 10.2

ExploreTerrain2 {MetaNeg,NegMech2,
CollectSamples}

13.05 16.6 10.2

ExploreTerrain3

{MetaNeg,NegMech1,
ExamineTerrain,

CollectSamples}
24.6 24.2 10.2

ExploreTerrain4

{MetaNeg,NegMech2,
ExamineTerrain,

CollectSamples}
25.05 24.6 10.2

Figure 3.7. Abstraction information for tasks AnalyzeRock and ExploreTerrain.
The columns respeectively represent the alternative name, method sequence of alter-
native, expected utility of alternative (EU), expected duration of alternative (ED)
and Non-Computational Time(NCT, time for non-local methods)

in the schedule/policy to allow meta-level reasoning of unanticipated events?

How much effort must be put into scheduling the task(s) by the scheduler?

Task structure ExploreTerrain contains a non-local enables and is translated to

contain virtual nodes which represent meta-level activity as shown in Figure 3.8.

Method CollectSamples has an incoming enables the following transformation rule is

applied to it.

Transformation rule: If task/method X (CollectSamples in example) has an

incoming external enables, replace it by task X’(CollectSamples’). Task X’ can be

achieved by first executing the MetaNeg primitive action which is a local quick and

inexpensive analysis done by the negotiation initiating agent to determine whether

or not its worthwhile to include the task/method with the negotiation overhead in

the schedule. It involves some low-level information gathering and the decision on
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D 100% 8

D 100% 2

sum_all

enablesenables
Neg. Task

exactly_one

NegMech1 NegMech2

Q 95% 1 5% 0
D 80% 3 20% 5

Q 80% 3 20% 0
D 100% 3 

Q 100% 0.01

Q 100% 12

Explore 
Terrain’

Terrain 

samples

Q 90% 10 10% 12
D 90% 10 10% 12

sum

Terrain 

T1

Explore 

Examine 

Meta−Neg. collect

Figure 3.8. Task ExploreTerrain modified to include meta-negotiation action

negotiation is made based on the agent’s own load, the task utility, the profiles of

the other tasks the local agent has to perform and the load of the enabling agent.

The MetaNeg method enables the NegTask task which stands for Negotiation Task.

It has very low utility by itself but is an important activity since it is a pre-condition

for other methods with non-zero utilities. The information gathered by the MetaNeg

action is used to decide whether to continue negotiation. If a decision to continue

negotiation is made, the information gathered is also used to choose one of the two ne-

gotiation mechanisms NegMech1 or NegMech2. NegMech1 is a single shot negotiation

mechanism and represents the quick alternative which has a lower probability of suc-

ceeding. NegMech2 is the multi-step alternative which takes longer duration and has

a higher probability of success as proposals and counter-proposals are handled. Suc-

cessful completion of NegTask leads to the enablement of method X(CollectSamples

in this example) as shown in the figure.

76



Consider a scenario where the arrival model for agent Fred (described as TaskName <

ArrivalT ime, Deadline >) is as follows:

1. AnalyzeRock < AT = 1, DL = 40 >,

2. ExploreTerrain < AT = 15, DL = 80 >,

3. AnalyzeRock < AT = 34, DL = 90 >,

4. ExploreTerrain < AT = 34, DL = 90 >.

So task AnalyzeRock arrives at agent Fred at time 1 with a deadline of 40, task

ExploreTerrain arrives at time 15 with a deadline of 80 and so on. The goal is to

maximize the expected utility over this deadline. The finite horizon considered for

this scenario is 100 time units (D=100).

Figure 3.9 describes the real states agent Fred is in while executing the best policy

prescribed by the meta-level controller. The agent visits 20 states of the four million

possible states while following the prescribed policy. The rows represent the system

states in sequential order. Column 1 is the state identity. Columns 2-11 represent

the dynamic state variables. Column 2 represents Current Time, Columns 3, 4, 5

and 6 represent the NewTaskList, the Agenda, the ScheduleList, and the Execution-

List respectively. Column 7 represents the information gathered upon execution of

the MetaNeg information. It is in the form of a 3-tuple describing Expected Utility,

Expected Deadline Tightness, Slack Amount information of the other agent’s (Bar-

ney) schedule. Column 8 represents the utility accrued by current schedule at current

time. Column 9 is the duration spent on current schedule at current time. Column

10 and 11 respectively represent the utility accrued and duration spent by the exe-

cuting primitive action when it is interrupted and control switches from execution to

meta-level control component. Column 12 represents the total utility accrued by the

agent at current time.
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To keep the representation concise, Task AnalyzeRock is called task T0, Task

ExploreTerrain is called task T1,

The corresponding states of Fred are provided in the time-line description of the

execution history following the figure. Only the features whose values are not “NONE’

and whose values have changed since the previous state are mentioned in the state

description.

Time 1: Fred is in state SO since it has no current tasks and is in a waiting
state. Task AnalyzeRock < 1, 40 > arrives with a deadline of 40. Meta-level
controller is invoked to determine the new state. Suppose the agent is given the
information that there is a MEDIUM probability of high priority task arriving
in the near future (Feature F5).

Time 2: Fred is in state S1 has the following features:
F0:< 1, 0, 0, 0 >

A single new task has arrived.
F1: HIGH
The new task has highest utility gain since agenda, scheduling list and execu-
tion list are empty.
F2: TIGHT
New task has closest deadline since agenda, scheduling list and execution list
are empty.
F5: MEDIUM
There is a medium probability of a valuable task arriving. This is prior knowl-
edge available to the agent. Based on the state information, the meta-level
control policy prescribes the action Call Detailed Scheduler. The meta-level
controller computes the features for the resulting state.

Time 3: Fred is in state S2 and has the following features which determine the
parameters for scheduling:
F0:< 0, 0, 1, 0 >

F1: HIGH
F2: TIGHT
It is not necessary to analyze local agent’s available slack since scheduling and
execution lists are empty. Based on the new state information and learned ar-
rival model, the meta-level control policy prescribes action to Begin schedul-
ing with the following parameters to the scheduler TSF=2; E=2,
S=10%.

Time 7: Fred is in state S3 when the scheduler emits the following schedule
{GettoRockLocation, FocusSpectrometeronRock}. The best action for
this state is to Begin Execution of GettoRockLocation.
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1 2 3 4 5 6 7 8 9 10 11 12
ID CT NewTaskList Agenda ScheduleList ExecutionList IG U s

a
Ds

a
U i

a
Di

a
U t

S0 1 φ φ φ φ φ 0 0 0 0 0
S1 2 T0 < 1, 40 > φ φ φ φ 0 0 0 0 0
S2 3 φ φ T0 < 1, 40 > φ φ 0 0 0 0 0
S3 7 φ φ φ {M1, M2} φ 0 0 0 0 0
S4 13 φ φ φ {M2} φ 6 8 0 0 6
S5 16 T1 < 15, 80 > φ φ {M2exe} φ 6 8 0 2 6
S6 17 φ T1 < 15, 80 > φ {M2exe} φ 6 8 0 2 6
S7 25 φ T1 < 15, 80 > φ φ φ 18 18 0 0 18
S8 26 φ T1 < 15, 80 > φ φ φ 0 0 0 0 18
S9 27 φ φ T1 < 15, 80 > φ φ 0 0 0 0 18

S10 31 φ φ φ

{MetaNeg,

NegMech2,

M3, M4}
φ 0 0 0 0 18

S11 33 φ φ φ
{NegMech2,

M3exe, M4}
<H,L,H> 0 1 0 2 18

S12 35
T0 < 34, 90 >,

T1 < 34, 90 >
φ φ

{NegMech2,

M3exe, M4}
φ 0 3 0 2 18

S13 36 φ φ

T0 < 34, 90 >,

T1 < 34, 90 >,

T1exe < 15, 80 >

φ φ 0 2 0 2 18

S14 43 φ φ φ
{NegMech2, M3exe,

M4, M1, M2}
φ 0 3 0 2 18

S15 46 φ φ φ
{M3exe, M4,

M1, M2}
φ 1 7 0 3 19

S16 52 φ φ φ {M4, M1, M2} φ 9 15 0 0 27
S17 58 φ φ φ {M4, M2} φ 15 21 0 0 33
S18 65 φ φ φ {M4, M2exe} φ 21 27 6 6 39
S19 77 φ φ φ {M2exe} φ 33 39 6 6 51
S20 80 φ φ φ φ φ 0 0 0 0 57

Figure 3.9. Agent Fred’s state transitions
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Time 13: Fred is in state S4 when execution of the method GettoRockLocation
completes with utility/reward of 6. The features are
F8: LOW
The deviation from expected performance is very small.
The best action for this state is to Begin Execution of FocusSpectrome-
teronRock.

Time 15: Execution of method FocusSpectrometeronRock is interrupted and
control switches from the execution component to the meta-level control com-
ponent when task ExploreTerrain < 15, 80 > arrives with a deadline of 80.

Time 16: Fred is in state S5 which has the following features:
F0: < 1, 0, 0, 1 >

A single new task has arrived and execution list is non-empty exists,. Agenda
and Scheduling list are empty.
F1: HIGH
Based on the task abstraction, it is deduced that the utility of the new task is
always higher than the lowest possible utility of the current task set.
F2: LOOSE
Based on the task abstraction, the deadlines of new task is far enough in the
future to schedule any of the alternatives of that task ExploreTerrain after
the current task is completed.
Based on the state information, the meta-level control policy prescribes the
action Add to agenda

Time 17: Fred is in state S6 which has the following features:
F0: < 0, 1, 0, 1 >

The best action prescribed is Resume execution of interrupted method.

Time 25: Fred is in state S7 when method FocusSpectrometeronRock com-
pletes with utility/reward of 12 and task AnalyzeRock completes with total
utility/reward of 18. The features are
F8: LOW
The deviation from expected performance is very low .
Since the scheduling and execution lists are empty, the agenda is automatically
checked and task ExploreTerrain < 15, 80 > is retrieved. The best action is
Evaluate task in agenda.

Time 26: Fred is in state S8 which has the following features:
F0: < 0, 1, 0, 0 >

Agenda has a single item in it.
F1: HIGH
Task on the agenda has highest utility gain since it is the only task to be
reasoned about by the agent.
F2: MEDIUM
The deadline is not too close nor too far off.
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F3: NONE
F4: NONE
The current schedule is reset to empty. Based on the state information, the
meta-level control policy prescribes the action Call Detailed Scheduler.

Time 27: Fred is in state S9 which has the following features:
F0: < 0, 0, 1, 0 >

Based on the new state information, the meta-level control policy prescribes
action to Begin scheduling with the following parameters to the sched-
uler TSF=2, E=2, S=30%.

Time 31: Fred is in state S10 when the scheduler emits the following schedule
{MetaNeg, NegMech2, ExamineTerrain, CollectSamples}. The best
action for this state is to Begin Execution of MetaNeg in parallel with
execution of ExamineTerrain.

Time 33: Fred is in state S11 when execution of MetaNeg completes. Fred’s total
utility is still 18. The information gathered by MetaNeg is as follows: Bar-
ney is executing schedule with HIGH expected utility/reward and the deadline
tightness for these tasks is LOW. There is also high slack in Barney’s schedule.
The following features are set:
F7: HIGH
Barney has high amount of slack.
F12: HIGH
The non-local agent can easily fit the new task’s enabler in its schedule.
Based on the state information, the meta-level control policy prescribes the
action Choose NegMech2 and continue. Method NegMech2 and Fo-
cusSpectrometeronRock are initiated in parallel.

Time 34:Execution of method FocusSpectrometeronRock is interrupted and
control switches from the execution component to the meta-level control com-
ponent when tasks AnalyzeRock < AT = 34, DL = 90 >, ExploreTerrain <

AT = 34, DL = 90 > arrive.

Time 35: Fred is in state S12 which has the following features.
F0: < 2, 0, 0, 1 >

F1: HIGH
F2: TIGHT
Based on the state information, the meta-level control policy prescribes the
action Call Detailed Scheduler on all lists .

Time 36: Fred is in state S13 which has the following features.
F0: < 0, 2, 0, 1 >

F9: MEDIUM
The decommitment cost is considerable and decommitment should be avoided
if possible.
F10: LOW
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The current schedule has low slack and cannot fit the new tasks in the slack
regions.
The meta-level control policy prescribes the following action: Begin schedul-
ing with the following parameters to the scheduler TSF=2, E=2,
S=30% on the two tasks in the agenda AnalyzeRock < AT = 34, DL =
90 >, ExploreTerrain < AT = 34, DL = 90 > and the task in execution
ExploreTerrain < AT = 15, DL = 80 >.

Time 43: Fred is in state S14 when the scheduler emits the following schedule
{NegMech2, ExamineTerrain, CollectSamples, GettoRockLocation,
FocusSpectrometeronRock}. It can be noted that task ExploreTerrain <

AT = 34, DL = 90 > is dropped by the domain-level scheduler even though the
meta-level controller had it in the scheduling list. The domain scheduler makes
this decision based on it detailed computation and determines that dropping
the ExploreTerrain < AT = 34, DL = 90 > task and using the resources
on the remaining two tasks leads to higher utility. The prescribed best action
for this state is Execute method NegMech2 in parallel with method
ExamineTerrain.

Time 46: Fred is in state S15 since method NegMech2 completes successfully
with utility 1. Agent’s total utility is 19. Method CollectSamples will be
enabled at time 65 The features are
F8 : LOW
Deviation from expected performance is found to be low. The chosen action is
Continue execution of ExamineTerrain.

Time 52: Fred is in state S16 since method ExamineTerrain completes with
utility 8. Fred’s total utility is 27. The features are
F8: LOW
The chosen action is Begin execution of GettoRockLocation.

Time 58: Fred is in state S17 since method GettoRockLocation completes with
utility 6. Fred’s total utility is 33. The features are
F8 : LOW
The chosen action is Begin execution of FocusSpectrometeronRock.

Time 65: Fred is in state S18 since method CollectSamples is enabled by non-
local agent. Execution of FocusSpectrometeronRock is interrupted and ex-
ecution of CollectSamples begins. FocusSpectrometeronRock has accu-
mulated utility of 6. Total utility is 39.

Time 77: Fred is in state S19 since execution of method CollectSamples com-
pletes with a utility/reward of 12 and task ExploreTerrain < AT = 15, DL =
80 > completes with utility/reward of 24. The total reward accumulated by the
system is 51. The features are
F8: LOW
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This is the actual utility.
The best action is Resume execution of FocusSpectrometeronRock.

Time 80: Fred is in state S20 since execution of FocusSpectrometeronRock
completes with utility of 12. Execution of task AnalyzeRock < AT = 34, DL =
90 > completes with a reward utility/reward 18. The features are
F8: LOW
This is the actual utility.
The total reward accumulated by the system is 57. The best action is Go to
wait state

Meta-level control reasoning in the agent leads to a cumulative utility of 57 units
within the finite horizon of 100. Tasks AnalyzeRock < AT = 1, DL = 40 >,,
ExploreTerrain < AT = 15, DL = 80 >, and AnalyzeRock < AT = 34, DL = 90 >,

were completed successfully.
If the agent had used deterministic control, then the Call Detailed Scheduler on all

tasks action would be initiated at every task arrival event independent of agent state,
including methods in execution or the nearness of their deadlines. A total time of 22
units would have been spent of control actions and only two tasks AnalyzeRock <

AT = 1, DL = 40 >, and ExploreTerrain < AT = 15, DL = 80 >, will complete
successfully with a utility of 33 units within the finite horizon of 100.

3.4 Summary
This chapter describes the meta-level control problem in cooperative multi-agent

systems. Meta-level control is the ability of complex agents operating in open envi-
ronments to sequence domain and control actions to optimize expected performance.
Meta-level control supports decisions on when to accept, delay or reject a new task,
when it is appropriate to negotiate with another agent, whether to renegotiate when a
negotiation task fails, how much effort to put into scheduling when reasoning about a
new task and whether to reschedule when actual execution performance deviates from
expected performance. These decisions influence each other and affect the amount of
resources available for future computations. A description of a meta-level agent archi-
tecture with bounded computational overhead which supports the sequential decision
making process is provided. A formal method for determining agent state features
is also described. The following two chapters will test the hypothesis that using this
state information, the best sequence of control and domain actions can be determined
for each environment. The action sequence can either be determined by a heuristic
hand-generated rules as described in the next chapter or can be learned automatically
as described in Chapter 5.
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CHAPTER 4

HEURISTIC STRATEGIES

This chapter addresses the three following questions: Does meta-level control lead
to better performance in rational agents situated in the task allocation and execution
domain? Is it possible to construct a hand-generated meta-level control policy based
on the high-level state features described in Chapter 3 for specific environments. Does
this hand-generated policy outperform a deterministic meta-level control policy?

Two heuristic strategies, the Naive Heuristic Strategy and the Sophisticated Heuris-
tic Strategy, that use context sensitive rules for meta-level control are described. Both
strategies use high-level state features and they serve as a test-bed for the effective-
ness of the state features for efficient meta-level control. The two strategies differ
from each other in that the naive strategy does not use information on the future
arrival of tasks in its reasoning process and hence makes myopic decisions. The so-
phisticated heuristic strategy on the other hand makes non-myopic decisions using
probabilistic information about future events that is available to it. Section 4.1 de-
scribes meta-level control within a single agent and will describe rules for three of the
five meta-level questions. Experimental results describing the utility of meta-level
control in a single agent are provided. Section 4.2 describes meta-level control within
a multi-agent system consisting of two agents. The meta-level decision rules that
facilitate coordination between the agents are presented. The experimental results
describe the benefit of meta-level control for the entire multi-agent system.

4.1 Single Agent Heuristic Decision Making

4.1.1 Naive Heuristic Strategy
The NHS uses state-dependent hand-generated heuristics to determine the best

course of meta-level control action. The current state information will allow the
meta-level controller to dynamically adjust its decisions. The heuristics, however, are
myopic and do not reason explicitly about the arrival of tasks in the near future. The
following are some of the heuristics used for decision-making by the NHS.

4.1.1.1 NHS Decision Rules for Arrival of a new task event
Suppose a new task arrives at time t. The agent has to decide whether to delay

the reasoning about the task until later; never execute the task; execute the task
immediately at arrival time by calling for a reschedule action or add the new task to
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the agenda. If more than one new task arrives at time t, the tasks will be evaluated
individually and ordered based on the tightness of their deadlines.

As mentioned in Chapter 3, each of the event triggers has an associated decision
tree which details the reasoning process. The reasoning process required to support
each of the action choices in Figure 3.2 is described below.

1. Drop task and revert to original status [A1]: If utility of the new task is LOW
and utility of current task set is HIGH or the deadline tightness of the task is
TIGHT to even attempt to do the task, then drop the task with no reconsider-
ation.

2. Do task now using simple scheduling i.e. abstraction-based alternative selection
and call execution component[A2]: If utility of new task is HIGH, its deadline is
TIGHT that detailed scheduling is not possible, the utility of current scheduled
task set is LOW, then delay current schedule and use simple scheduling to
process new task now.

3. Do task now using complex domain-level scheduler [A3]: If utility of new task is
HIGH, its deadline is MEDIUM, yet far enough away to allow detailed schedul-
ing of the single task, the utility of current scheduled task set is LOW, then
delay current scheduled task set and use complex scheduling to schedule new
task.

4. Call detailed scheduler on items on all lists[A4]: If both the utility of the new
task and the agenda items are HIGH and comparable to the current schedule
and the deadlines are MEDIUM, it is worthwhile to call the detailed scheduler
on the new tasks, agenda and current schedule.

5. Add task to agenda[A5]: If the utility of the new task is HIGH, its deadline
tightness is LOOSE, the utility of the current task set is also HIGH and there is
enough time to schedule and successfully execute the new task after completion
of the current task set, then delay reasoning of the new task for later by adding
it to the agenda.

6. Get more features[A6]: If utility of tasks in the agenda and utility of currently
scheduled task set are both MEDIUM or HIGH , and the deadline of tasks in
the agenda and deadline of current schedule are both MEDIUM or LOOSE and
the slack in the schedule is MEDIUM or HIGH and the decommitment cost
is MEDIUM or LOW, then obtaining more information on the slack distribu-
tion and/or commitment details will help the meta-controller to make accurate
action choices.

(a) Drop task and revert to original status[A7]: If the utility of tasks in the
agenda and utility of currently scheduled task set are both MEDIUM, the
deadline of tasks in the agenda and deadline of current schedule are both
MEDIUM and the decommitment cost is MEDIUM or LOW, and the slack
in local schedule is LOW, then drop task.
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(b) Do task now using simple scheduling [A8]: If the utility of tasks in the
agenda and utility of currently scheduled task set are both MEDIUM or
HIGH, the deadline of tasks in the agenda and deadline of current schedule
are both MEDIUM and the decommitment cost is MEDIUM or LOW, and
the slack in local schedule is MEDIUM, then delay current schedule and
use simple scheduling to do new task now.

(c) Accept task and call detailed scheduler on it [A9]: If the utility of of the
new task and currently scheduled task set are both MEDIUM or HIGH, the
deadline of new task and deadline of current schedule are both MEDIUM,
the decommitment cost is MEDIUM and the slack in local schedule is
HIGH, it is worthwhile to call the detailed scheduler on the agenda and
current schedule.

(d) Call detailed scheduler on items on all lists[A10]: If the utility of the
new task and the agenda items are both HIGH and the utility of the
current schedule is also HIGH and the deadlines tightness is MEDIUM,
the decommitment cost is MEDIUM and the slack in local schedule is
HIGH, it is worthwhile to call the detailed scheduler on the new tasks,
agenda and current schedule.

(e) Add task to agenda [A11]: If the utility of the new task is HIGH, its
deadline is MEDIUM, the utility of the current task set is also HIGH and
there is enough time to schedule and successfully execute the new task after
completion of the current task set and slack in local schedule is LOW, then
delay reasoning of the new task for later.

4.1.1.2 NHS Decision Rules for Invoking domain level scheduler event

Suppose there is a call to the scheduler either due to the arrival of a new
task or due to a request to negotiate, the meta-level controller has to decide the
appropriate parameters needed to call the scheduler. There are two parameters-
scheduler effort which determines whether the new task or method can be
easily fit in to the current schedule, fit with some modifications or requires a
complete reschedule of the task set; and slack which determines whether to
insert minimum slack in the schedule, making the schedule inflexible but very
efficient or to insert a significant amount of slack and determine where it is
appropriate that slack be introduced. A high amount of slack will trade-off
efficiency for flexibility. Figure 3.3 describes the associated decision tree.

(a) Effort E: The scheduling effort parameter determines the amount of com-
putational effort that should be invested by the scheduler. The parameter
can be set to either HIGH, where a high number of alternative schedules are
produced and examined if the task(s) to be scheduled have HIGH utility
and LOOSE deadlines or LOW, where pruning occurs at a very early stage
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and hence few alternative schedules are compared, reducing the computa-
tional effort while compromising the accuracy of the schedule, if the task(s)
to be scheduled have MEDIUM utility and MEDIUM deadline tightness.

(b) Slack S: If the tasks have high level of uncertainty in expected performance
of local actions or in completion of commitments, and the deadlines are
far enough in the future then the high slack option is chosen and detailed
computation is done to decide where to appropriately fit the slack.

If the new task has HIGH uncertainty in its execution characteristics, set
the slack to 50% of the total available time.

If the new task has MEDIUM uncertainty in its execution characteristics,
set the slack to 30% of the total available time

In all other cases, set the slack to 10% of the total available time

4.1.1.3 NHS Decision Rules for Significant deviation of online schedule

performance event

The meta-controller will monitor the actual performance characteristics of its
method executions and determine when, if appropriate, it should call the sched-
uler to reevaluate the current status and determine an alternate course of action.
Figure 3.5 describes the associated decision tree.

(a) Continue with original schedule [E1]: If the cumulative actual performance
falls within a 10%1 of the expected performance, in other words, if actual
performance does not deviate too much from expected performance, then
continue with the original schedule.

(b) Call reschedule [E2]: If the cumulative actual performance falls below the
expected performance by 10%, then the rescheduler should be called.

4.1.2 Sophisticated Heuristic Strategy
The Sophisticated Heuristic Strategy(SHS) is a set of hand-generated rules which

use knowledge about task arrival models to predict the environment characteristics.
An environment is typically characterized by the expected utilities of the tasks, their
deadline tightness and frequency of arrival. In this work, the information on the three
parameters is available to the SHS. Though not implemented in the dissertation, this
information can be learned by the SHS by gathering statistics over multiple runs. The
meta-level controller can make non-myopic decisions by including information about
its environment in its reasoning process. The following are the heuristics which show
that the SHS can be more discriminatory about its decisions than NHS since it reasons
about tasks that could arrive in the future.

1this is a domain-dependent threshold value
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4.1.2.1 SHS Decision Rules for Arrival of a new task event
The reasoning process required to support each of the action choices in Figure 3.2

using SHS is described below. As in the case of NHS decision rules, if a state feature
is omitted in the rule, it means the feature can take any of its values.

1. Drop task and revert to original status [A1]:

If new task has LOW utility goodness and TIGHT deadline; HIGH probability
of high priority tasks arriving in the near future, then best action is drop new
task.

If utility of the new task is LOW and utility of current task set is HIGH or the
deadline of task is TIGHT to even attempt to do the task, then drop the task
with no reconsideration.

If new task and current schedule have HIGH utility and MEDIUM or TIGHT
deadlines; HIGH probability of high priority tasks arriving in the near future,
then best action is drop new task and continue with the current schedule

2. Do task now using simple scheduling i.e. abstraction-based alternative selection
and call execution component[A2]:

If utility of new task is HIGH, its deadline is TIGHT such that detailed schedul-
ing is not possible, the utility of current scheduled task set is significantly low,
then delay current schedule and use simple scheduling to do new task now.

If new task has LOW utility goodness and TIGHT deadline; LOW probability
of high priority tasks arriving in the near future, then best action is use simple
scheduling to do new task now.

If a LOW utility new task is to be scheduled; LOW probability of a high priority
task arriving in the near future, then best action is to use abstraction-based
simple scheduler independent of the new task’s deadline tightness.

3. Do task now using complex domain-level scheduler [A3]:

If utility of new task is HIGH, its deadline is MEDIUM and far enough to allow
detailed scheduling of the single task, the utility of current scheduled task set
is MEDIUM, MEDIUM probability of high priority tasks arriving in the near
future, then delay current scheduled task set and use complex scheduling to
schedule new task.

If new task has high priority; current schedule has LOW utility, TIGHT dead-
line; LOW probability of high priority tasks arriving in the near future, then
best action is drop current schedule and schedule the new task immediately.

4. Call detailed scheduler on items on all lists[A4]:

If the utility of the new task is HIGH and utility of the current schedule
and agenda are either HIGH or MEDIUM and the deadlines are MEDIUM
or LOOSE, it is worthwhile to call the detailed scheduler on the new tasks,
agenda and current schedule.
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5. Add task to agenda[A5]:

If the utility of the new task is HIGH, its deadline is LOOSE, the utility of
the current task set is also HIGH and its deadline is LOOSE or MEDIUM and
probability of arrival of high priority tasks in the near future is MEDIUM or
LOW then delay reasoning of the new task for later by adding it to the agenda.

If new task has MEDIUM or LOW utility, MEDIUM or LOOSE deadline; cur-
rent schedule has HIGH utility; LOW probability of high priority task arriving
in the near future, then reasoning about the new task should be delayed till
later.

6. Get more features[A6]:

If utility of tasks in the agenda and utility of currently scheduled task set are
both MEDIUM or HIGH , and the deadline of tasks in the agenda and deadline
of current schedule are both MEDIUM or LOOSE and the slack in the schedule
is MEDIUM or HIGH and the decommitment cost is MEDIUM or LOW, and
the probability of arrival of high priority tasks in the near future is LOW,
then obtaining more information on the slack distribution and/or commitment
details will help the meta-controller to make accurate action choices.

(a) Drop task and revert to original status[A7]: If the utility of tasks in the
agenda and utility of currently scheduled task set are both MEDIUM, the
deadline of tasks in the agenda and deadline of current schedule are both
MEDIUM and the decommitment cost is MEDIUM or LOW, and the slack
in local schedule is LOW, then drop task.

(b) Do task now using simple scheduling [A8]: If the utility of tasks in the
agenda and utility of currently scheduled task set are both MEDIUM or
HIGH, the deadline of tasks in the agenda and deadline of current schedule
are both MEDIUM and the decommitment cost is MEDIUM or LOW, and
the slack in local schedule is MEDIUM, then delay current schedule and
use simple scheduling to do new task now.

(c) Accept task and call detailed scheduler on it [A9]: If the utility of of the
new task and currently scheduled task set are both MEDIUM or HIGH, the
deadline of new task and deadline of current schedule are both MEDIUM,
the decommitment cost is MEDIUM and the slack in local schedule is
HIGH, it is worthwhile to call the detailed scheduler on the agenda and
current schedule.

(d) Call detailed scheduler on items on all lists[A10]: If the utility of the
new task and the agenda items are both HIGH and the utility of the
current schedule is also HIGH and the deadlines tightness is MEDIUM,
the decommitment cost is MEDIUM and the slack in local schedule is
HIGH, it is worthwhile to call the detailed scheduler on the new tasks,
agenda and current schedule.
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(e) Add task to agenda [A11]: If the utility of the new task is HIGH, its
deadline is MEDIUM, the utility of the current task set is also HIGH and
there is enough time to schedule and successfully execute the new task after
completion of the current task set and slack in local schedule is LOW, then
delay reasoning of the new task for later.

4.1.2.2 SHS Decision Rules for Invoking domain level scheduler event

Figure 3.3 describes the associated decision tree for determining the scheduling
effort and slack parameters

(a) Effort E: The scheduling effort parameter determines the amount of com-
putational effort that should be invested by the scheduler. The parameter
can be set to either HIGH or LOW.

If the utility of the new task is MEDIUM or LOW, and its deadline tight-
ness is MEDIUM, the utility of the current task is MEDIUM and the
deadline tightness is MEDIUM or LOW and there is a LOW probability
of a high priority task arriving in the near future, then the scheduler effort
should be set to LOW.

In all other cases, the scheduler effort is set to high.

(b) Slack S: Slack allows for flexibility in the schedule to handle unexpected
events. It can be set to 10%, 30% and 50% of the total available time.

If the new task has HIGH uncertainty in its execution characteristics and
there is a MEDIUM to high probability of arrival of high priority tasks in
the near future, set the slack to 50% of the total available time.

If the new task has MEDIUM uncertainty in its execution characteristics
and there is a MEDIUM to high probability of arrival of high priority tasks
in the near future, set the slack to 30% of the total available time

In all other cases, set the slack to 10% of the total available time

4.1.2.3 SHS Decision Rules for Significant deviation of online schedule

performance event

Figure 3.5 describes the associated decision tree.

(a) Continue with original schedule [E1]:

If the cumulative actual performance falls within a 10% (a domain-dependent
value) of the expected performance, in other words, if actual performance
does not deviate too much from expected performance, then continue with
the original schedule.

If the cumulative actual performance falls below the expected performance
by 10%, and there is HIGH probability of arrival of high priority tasks in
the near future then continue with the original schedule..
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(b) Call reschedule [E2]:

If the cumulative actual performance falls below the expected performance
by 10% and there is LOW to MEDIUM probability of arrival of high pri-
ority tasks in the near future, then the rescheduler should be called.

4.1.3 Experiments
This sub-section provides performance comparisons of four different strategies to

meta-level control: Naive Heuristic Strategy (NHS); Sophisticated Heuristic Strategy
(SHS); Deterministic Strategy; and Random Strategy within a single agent context.
The deterministic strategy uses a fixed choice of meta-level action. When a new task
arrives, this strategy always chooses to perform complex scheduling on the new task
along with the tasks in the current schedule and tasks in the agenda. The scheduler
is invoked with a fixed effort level of high and fixed slack amount of 10% of the total
schedule duration. The random strategy randomly chooses its actions for each of the
three meta-level control decisions.

The meta-level control decisions that are considered in this single agent set up are:
when to accept, delay or reject a new task, how much effort to put into scheduling
when reasoning about a new task and whether to reschedule when actual execution
performance deviates from expected performance. For all the experiments described
in this dissertation, the following costs are assumed. The meta-level control actions
have an associated cost of 1 time unit; the drop task and delay task actions take
1 time unit also. The call to simple scheduler costs 2 time units and the cost of
computation of complex features costs 2 time units, the cost of detailed scheduling
tasks with less than five methods is 4 units, with less than ten methods is 12 time
units and greater than ten methods is 18 time units.

The agents in the experimental test-bed were implemented using the Java Agent
Framework (JAF) framework and situated in the Multi-Agent Survivability Simula-
tor (MASS) environment. A detailed description of JAF and MASS is provided in
Appendix A. Each agent simulation was run on a Intel Pentium(R) machines with
four 1.80GHz processors running linux. Each machine has 256 MB of memory and
connected via a fast-ethernet network interface.

The task environment generator randomly creates task structures while varying
three critical factors:

1. complexity of tasks c ε {simple(S), complex(C), combination(A)}

2. frequency of arrival f ε {high(H), medium(M), low(L)}

3. tightness of deadline dl ε {tight(T ), medium(M), loose(L)}.

Complexity of tasks refers to the expected utilities of tasks and the number of al-
ternative plans available to complete the task. Typically, complex tasks have higher
expected utility, higher expected durations and a greater number of alternatives than
simple tasks. A simple task has two primitive actions and its structure and number
of possible alternatives is similar to the AnalyzeRock task (Figure 1.6)described in
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Figure 4.1. A Complex Task in a Single Agent Environment

Chapter 1. The utility distribution and duration distribution of a simple task is within
a 5% range of the corresponding distributions of AnalyzeRock. A complex task also
has structure similar to that of GetImage task described in Figure 4.1. It has between
four and six primitive actions. The utility distribution and duration distribution of
a complex task is within a 5% range of the corresponding distributions of GetImage.
The combination value means that 50% of the tasks are simple and 50% are complex
tasks.

The frequency of arrival of tasks refers to the number of tasks that arrive within
a finite time horizon. The resource contention among the tasks increases as the
task frequency increases. Task arrival is is determined by a normal distribution with
µ = 250 and σ = 249. When the frequency of arrival is low, about one to ten tasks
arrive at the agent in 500 time unit horizon; when the frequency is medium, between
ten and fifteen tasks arrive at the agent; and when the arrival frequency is high,
fifteen to twenty arrive on average at the agent. The tightness of deadline refers to
the parameter defined in the previous section and it is task specific. The resource
contention is also proportional to the deadline tightness. If the deadline tightness is
set to low, the maximum available duration given to the task is between 120% and
150% of the expected duration of the task; if the deadline tightness is set to medium,
the maximum available duration given to the tasks is between 100% and 120% of
the expected duration of the task; and if the deadline tightness is set to high, the
maximum available duration is between 80% and 100% of the expected duration of
the task.

Environments are named based on values of these three criteria in the order men-
tioned above. For instance, environment AMM is one that has a combination of
simple and complex tasks, with medium frequency of arrival and medium deadline
tightness.

92



Row# SHS NHS Deter. Rand.

1 AUG 205.49 192.10 121.90 89.97
2 σ 7.0 12.5 12.55 19.114
3 CT 20.37% 23.92% 39.27% 11.77%
4 RES 0% 14.53% 0% 50.56%
5 PTC 41.08% 39.64% 30.52% 21.56%
6 PTDEL 43.78% 49.0% 0% 11.49%

Table 4.1. Performance evaluation of four algorithms over a single environment
AMM with a combination of tasks, medium frequency of arrival and medium deadline
tightness. Column 1 is row number; Column 2 describes the various comparison
criteria; Columns 3-6 represent each of the four algorithms; Rows 1 and 2 show the
average utility gain (AUG) and respective standard deviations (σ) per run; row 3
shows the percentage of the total 500 units spent on control actions(CT); row 4 is
percent of tasks rescheduled (RES); Row 5 is the percent of total tasks completed
(PTC);Row 6 is percent of tasks delayed on arrival (PTDEL)

The experimental results described in Table 4.1 show the performance of the var-
ious strategies in an environment, AMM, which, as mentioned before, contains a
combination of simple and complex tasks. The frequency of task arrival in this envi-
ronment is medium and ranges between 10 and 15 tasks in the 500 time unit interval.
The deadline tightness is also medium. Simple tasks have an average duration of 22
time units and complex tasks have an average duration of 32 time units. Each strat-
egy was evaluated over 300 runs and each run has an associated task arrival model,
lasts 500 time units and has an average of 15 meta-level control decision points per
run.

Column 1 is row number; Column 2 describes the various comparison criteria;
Columns 3-6 represent each of the four algorithms. Rows 1 and 2 of the table describe
the average utility gained (AUG) by each of the strategies and the corresponding
standard deviations. The heuristic strategies (SHS and NHS) significantly (p < 0.05)
outperform the deterministic and random strategies with respect to utility gain. The
accepted hypothesis is that SHS and NHS on average achieved at least 68.5% and
57.58% higher utility than the deterministic strategy respectively.

SHS has about a 10% improvement in utility gain than NHS. Detailed analysis of
the data shows that NHS assigns incorrect amounts of slack in the schedule which is
required to handle unexpected meta-level activities. This leads to frequent reschedule
calls and an increase in time spent on control actions. The SHS is able to allocate
accurate amounts of slack because it has access to the task arrival model information
and is able to avoid unnecessary control actions (particularly reschedules).

Row 3 shows the percent of the 500 time units for each run that was spent on
control actions (CT) and row 4 shows the percent of tasks that were rescheduled
(RES) per run in the midst of their execution. For the above mentioned reason,
NHS has a significant number of reschedules resulting in time being spent on control
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Figure 4.2. Average Utility Comparison between Heuristic Strategies and Baseline
Strategies over 8 different environments. The error bars are one standard deviation
above and below each mean

actions instead of being spent the utility deriving domain actions. Row 3 shows that
the duration spent on control actions by NHS is significantly (p < 0.05) higher than
that of SHS. The deterministic strategy does not ever reschedule but invests a lot
of time on control actions since the fixed strategy is time-intensive. The random
strategy spends the least amount of time on control (11.77%) because it attempts
relatively few tasks (there is a high probability of a task being dropped randomly
upon arrival).

Row 5 is the percent of total tasks completed (PTC). This was found to be less
than 50% for this environment. This is because this environment is fairly dynamic
(in terms of frequency of occurrence of exogenous events) and has tight constraints
(the deadlines of ask are of medium tightness) that limit the number of tasks that
can be successfully completed

Row 6 is percent of tasks delayed on arrival (PTDEL). Here too about 45% of
the tasks are delayed in case of the heuristic strategies signifying there is significant
overlap among the tasks in terms of resource usage. In other words, new tasks often
arrive at the agent when the agent is busy with other tasks.

Figure 4.2 shows the utility comparisons over a number of environments. The
heuristic strategies (SHS and NHS), as in the case of environment (AMM) described
previously, significantly outperform (p<0.05)the baseline strategies (Deterministic
and Random) over all eight types of environments. The accepted hypothesis is that
SHS and NHS on average achieved at least 30% more utility than the deterministic
strategy.

Table 4.2 provides the detailed information on the performance comparison. Columns
2-5 show the average utility gained by each of the four algorithms for that environ-
ment. Column 6 named p1 shows the statistical significance (p-value) of SHS with
respect to NHS. Column 7 named p2 shows the statistical significance of SHS with
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Environment SHS NHS Deter. Rand. p1 p2 p3

AMM 205.49 192.10 121.90 89.97 0.032 0.0001 0.0001
AMT 117.34 115.69 82.17 67.33 0.4391 0.0001 0.0001
AHT 124.80 123.96 61.77 86.20 0.6906 0.0001 0.0001
ALM 135.05 124.74 115.93 48.21 0.004 0.0001 0.0001
AML 231.44 218.07 140.80 105.16 0.0045 0.0001 0.0001
AHL 229.07 218.86 94.55 127.47 0.0024 0.0001 0.0001
ALL 151.31 145.03 130.80 51.76 0.2596 0.0001 0.0001
CLL 163.77 157.27 103.33 50.86 0.0643 0.0001 0.0001

Table 4.2. Utility Comparisons over a number of environments
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Figure 4.3. Average Percent Control Time Comparison between Heuristic Strategies
and Baseline Strategies over 8 different environments

respect to the deterministic algorithm. Column 8 named p3 shows the statistical
significance of NHS with respect to the deterministic algorithm.

The reason for the improved performance by the heuristic strategies when com-
pared to the deterministic and random strategies is found in Figure 4.3 which shows
the percent of control time comparisons over the same set of environments. As de-
scribed in Chapter 3, control actions do not have associated utility of their own.
Domain actions produce utility upon successful execution and the control actions
serve as facilitators in choosing the best domain actions given the agent’s state infor-
mation. So resources such as time spent directly on control actions do not directly
produce utility. When excessive amounts of resources are spent on control actions,
the agent’s utility is reduced since resources are bounded and are not available for
utility producing domain actions.

The heuristic strategies use control activities that optimize their use of available
resources (time in this case). The deterministic strategy on the other hand always
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Environment# SHS NHS Deter. Rand.

AMM 20.37% 23.92% 39.27% 11.77%
AMT 24.95% 20.32% 36.59% 8.07%
AHT 35.26% 34.09% 55.82% 17.24%
ALM 10.11% 10.32% 14.42% 4.61%
AML 23.45% 22.73% 38.77% 12.12%
AHL 31.23% 28.73% 48.12% 18.11%
ALL 10.99% 10.44% 14.83% 4.82%
CLL 11.08% 10.99% 12.39% 4.29%

Table 4.3. Control Time Comparisons over a number of environments; Column 1 is
the environment type; Columns 2-5 represents the % of total time spent on control
actions by each of the four algorithms for that environment;

makes the same control choice, the expensive call to the detailed scheduler, inde-
pendent of context. Hence the deterministic strategy has higher control costs, than
the heuristic strategies and has less resources (time) to execute domain actions and
accrue utility. The random strategy has low control costs but it doesn’t reason about
its choices leading to bad overall performance. Table 4.3 provides the details about
the percent of total available time per episode(500 units) that was spent on control
actions.

It can be observed in Table 4.2 that the SHS strategy is significantly better than
the NHS (p<0.05) in some environments (ALM, AML, AHL). All three environments
can be characterized as medium constrained environments. In environment ALM,
the arrival frequency is loosely constrained while the deadline tightness is MEDIUM.
On detailed analysis of the data, it was found that there were extended periods in
which no tasks arrived at the agent and then there would be burst of task arrivals. So
information on the nature of future tasks allowed the agent to make better decisions
during those periods of resource contentions (caused by the medium deadlines). In
the other two environments, the deadline tightness was LOOSE while the arrival
frequency was either MEDIUM and HIGH. Since the tasks have loose deadlines, they
can be processed whenever resources are available without detrimentally affecting the
utility. However since the arrival frequency is medium to tightly constrained, there
is a very high probability of overlapping tasks contending for resources. The arrival
model information will allow the agent to dynamically adjust its decisions on tasks
and use the bounded resources in an efficient way.

It can be deduced that the arrival model information available to the SHS is ad-
vantageous only in environments that are neither tightly constrained or loosely con-
strained. This is a characteristic shared with constraint satisfaction problems where
there are few solutions in highly constrained problems and too many good solutions
in loosely constrained problems. In either case, the difference between performance
of alternative approaches is not significant.
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Environment# SHS NHS Deter. Rand.

AMM 41.08% 39.64% 30.52% 21.56%
AMT 28.60% 27.51% 21.7% 19.87%
AHT 22.08% 21.28% 12.47% 13.97%
ALM 56.86% 56.66% 55.09% 22.15%
AML 45.11% 39.61% 21.14% 21.27%
AHL 33.80% 28.75% 22.0% 19.04%
ALL 65.12% 63.39% 52.84% 23.48%
CLL 76.95% 71.78% 28.11% 24.51%

Table 4.4. Comparison of percent of tasks completed over a number of environments;
Column 1 is the environment type; Columns 2-5 represents the % of total time spent
on control actions by each of the four algorithms for that environment;

Table 4.4 compares the percentage of tasks that were successfully completed by
the four algorithms in different environments. In tightly constrained environments
like those with tight task deadlines (AMT, AHT), the number of tasks completed is
relatively low because often there aren’t enough resources to execute the task and
process all the external events also. In loosely constrained environments like ALM,
CLL and ALL, task arrival is few and far between allowing the agent to complete one
task successfully and to move on to the next task.

4.2 Multi-Agent Heuristic Decision Making

4.2.1 Naive Heuristic Strategy
An agent in a multi-agent setting makes decisions on the three events described

in the single agent setup. Additionally, it reasons about two other events that occur
specifically when coordination with another agent is required for task completion.
The following are the heuristics for the two additional meta-level decisions.

4.2.1.1 NHS Decision Rules for Presence of task requiring Negotiation event
Figure 3.4) describes the action set for this event. Suppose there is a subtask

or method in the currently scheduled task which either requires a non-local method
to enable it or should be sub-contracted out to another agent. The local agent has
to decide whether it is worth its while to even initiate negotiation and if so, what
kind of negotiation mechanism to use. The information gathering action, MetaNeg,
when executed, will gather information on the state of the non-local agent that is
being considered for negotiation. The meta-meta decision on whether to execute
MetaNeg is made by the domain-level scheduler which will compare the alternate
ways of achieving the task and to determine whether the approach to solve parts of
the task through negotiation seems advantageous over other approaches.
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1. No negotiation and call reschedule if needed[B1]: If utility of the task set of the
non-local agent is HIGH, task utility of the new task is LOW, and there is not
enough slack to fit the new task in the non-local schedule, then don’t negotiate.

2. Negotiate with NegMech1 [B2] : If utility of the task set of the other agent
is MEDIUM, flexibility of the schedule of the non-local agent is MEDIUM and
utility of the new task is HIGH, then the agent should negotiate with the single-
shot negotiation mechanism NegMech1.

3. Negotiate with NegMech2 [B3] : If utility of the task set of the other agent is
LOW, flexibility of the schedule of the non-local agent is HIGH and utility of
the new task is HIGH, then the agent should negotiate using NegMech2 which
is a multi-try negotiation mechanism.

4.2.1.2 NHS Decision Rules for Failure of Negotiation event
Suppose there is a subtask or method in the currently scheduled task which has

been negotiated about with a non-local agent and suppose the negotiation fails. The
local agent should decide whether to renegotiate and if so, which mechanism should
it use? Figure 3.6 describes the associated decision tree.

1. No Renegotiation and reschedule is needed[C1]: If there is no time left for
renegotiation then drop negotiation and the related method from the schedule.

2. Renegotiate using NegMech1 [C2]: If utility of the task set of the other agent
is MEDIUM, flexibility of the schedule of the non-local agent is MEDIUM and
utility of the new task is HIGH, then the agent should negotiate with NegMech1.

3. Renegotiate using NegMech2 [C3]: If utility of the task set of the other agent
is LOW, flexibility of the schedule of the non-local agent is HIGH and utility of
the new task is HIGH, then the agent should negotiate using NegMech2.

4.2.2 Sophisticated Heuristic Strategy
The following are the heuristics for the two additional meta-level decisions neces-

sary in multi-agent contexts.

4.2.2.1 SHS Decision Rules for Presence of task requiring Negotiation event
Figure 3.4) describes the action set for this event. The event occurs when the

MetaNeg information gathering action completes execution.

1. No negotiation and call reschedule if needed[B1]:

If utility of the task set of the non-local agent is HIGH, task utility of the new
task is LOW, if slack in the non-local schedule is LOW, and there is MEDIUM
to HIGH probability of arrival of high priority tasks in the near future, then
don’t negotiate.
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2. Negotiate with NegMech1 [B2] :

If utility of the task set of the other agent is LOW, slack in the schedule of the
non-local agent is HIGH, utility of the new task is HIGH and LOW probability of
arrival of high priority tasks in the near future, then the agent should negotiate
using NegMech1.

If utility of the task set of the other agent is LOW or MEDIUM, flexibility of the
schedule of the non-local agent is HIGH, utility of the new task is MEDIUM,
and LOW probability of arrival of high priority tasks in the near future, then
the agent should negotiate using NegMech1.

3. Negotiate with NegMech2 [B3] :

If utility of the task set of the other agent is LOW, slack in the schedule of
the non-local agent is HIGH and utility of the new task is HIGH, its deadline
tightness is MEDIUM or FAR, and LOW or MEDIUM probability of arrival
of high priority tasks in the near future, then the agent should negotiate using
NegMech2.

4.2.2.2 SHS Decision Rules for Failure of Negotiation event
Figure 3.6 describes the decision tree for what to do when a previous negotiation

fails.

1. No Renegotiation and reschedule is needed[C1]:

If there is no time left for renegotiation then drop negotiation and the related
method from the schedule.

2. Renegotiate using NegMech1 [C2]:

If utility of the task set of the other agent is LOW or MEDIUM, flexibility of the
schedule of the non-local agent is HIGH, utility of the new task is MEDIUM,
and LOW probability of arrival of high priority tasks in the near future, then
the agent should renegotiate using NegMech1.

3. Renegotiate using NegMech2 [C3]:

If utility of the task set of the other agent is LOW, slack in the schedule of
the non-local agent is HIGH and utility of the new task is HIGH, its deadline
tightness is MEDIUM or FAR, and LOW or MEDIUM probability of arrival of
high priority tasks in the near future, then the agent should renegotiate using
NegMech2.

4.2.3 Experiments
This sub-section provides performance comparisons of the four different strate-

gies to meta-level control: Naive Heuristic Strategy (NHS); Sophisticated Heuristic
Strategy (SHS); Deterministic Strategy; and Random Strategy within a multi-agent
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context. The deterministic strategy in the multi-agent setup uses a fixed choice of
meta-level action just as in the single agent set-up. When a new task arrives, this
strategy always chooses to perform complex scheduling on the new task along with
the tasks in the current schedule and tasks in the agenda. The scheduler is invoked
with a fixed effort level of high and fixed slack amount of 10% of the total sched-
ule duration. When negotiation is required for a task, the agent always chooses to
negotiate with another agent and if negotiation fails, the agent does not choose to
negotiate again. The random strategy randomly chooses its actions for each of the
five meta-level control decisions.

The meta-level control decisions that are considered in the multi-agent set up are:
when to accept, delay or reject a new task, how much effort to put into schedul-
ing when reasoning about a new task, whether to reschedule when actual execution
performance deviates from expected performance, whether to negotiate with another
agent about a non-local task and whether to renegotiate if a previous negotiation falls
through. For all the experiments described in this dissertation, the following costs are
assumed. The meta-level control actions have an associated cost of 1 time unit; the
drop task and delay task actions take 1 time unit also. The decision to negotiate and
whether to renegotiate also take 1 unit of time. The call to simple scheduler costs 2
time units and the cost of computation of complex features costs 2 time units, the
cost of detailed scheduling tasks with less than five methods is 4 units, with less than
ten methods is 12 time units and greater than ten methods is 18 time units.

The task environment generator in the multi-agent setup also randomly creates
task structures while varying three critical factors:

1. complexity of tasks c ε {simple(S), complex(C), combination(A)}

2. frequency of arrival f ε {high(H), medium(M), low(L)}

3. tightness of deadline dl ε {tight(T ), medium(M), loose(L)}.

Complexity of tasks as described earlier refers to the expected utilities of tasks and
the number of alternative plans available to complete the task. A simple task, in the
multi-agent setup, has two primitive actions and its structure and number of possible
alternatives is similar to the AnalyzeRock task (Figure 1.6) described in Chapter 1.
The utility distribution and duration distribution of a simple task is within a 5% range
of the corresponding distributions of AnalyzeRock. A complex task in the multi-agent
set-up can be of two types, one has structure similar to ExploreTerrain task described
in Figure 1.6 and the other has structure similar to that of GetImage task described
in Figure 4.1. The utility distribution and duration distribution of a complex task is
within a 5% range of the corresponding distributions of ExploreTerrain or GetImage
task. The combination value means that 50% of the tasks are simple and 50% are
complex tasks. The frequency and deadline tightness are the same as in the single
agent setup.

Preliminary experimental results describing the behavior of two interacting agents
is presented in Figure 4.4 and Table 4.5. Performance comparison of the various
strategies in an environment, AMM, over a number of dimensions are provided. The
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Figure 4.4. Average Utility Comparison between Heuristic Strategies and Baseline
Strategies in a Multiagent environment. The error bars are one standard deviation
above and below each mean

results show that the combined utilities of the two agents when using the heuristic
strategies is significantly higher than the combined utilities when using the determinis-
tic and random strategies. The utility obtained from using SHS is significantly higher
than NHS and also 14% more tasks are completed using SHS than the NHS. These
preliminary results are encouraging since in this specific environment, the performance
of the multi-agent system supports the hypothesis of this dissertation. Further experi-
mental studies to establish the advantage of meta-level control in multi-agent systems
are ongoing.

4.3 Summary
This chapter presents two context sensitive heuristic strategies: the Naive Heuris-

tic strategy (NHS) that uses myopic information to make meta-level control action
choices; and the Sophisticated Heuristic strategy (SHS) that uses current state in-
formation and predictive information about the future to make non-myopic action
choices. A description of the decision rules used in each of these strategies is pro-
vided. The experimental evaluation described in this section lead to the following
conclusions : Meta-level control reasoning is advantageous in resource-bounded agents
in different types of environments; the high-level features described in the previous
chapter are good indicators of the agent state and facilitate effective meta-level con-
trol; the heuristic strategies are good indicators of the positive effects of meta-level
control in resource-bounded agents because they outperform deterministic and ran-
dom strategies; and predictive information about future arrival tasks is useful in some
environments and not in others.
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Row# SHS NHS Deter. Rand.

1 AUG 111.44 89.84 77.56 45.56
2 σ 2.33 6.54 12.45 15.43
3 CT 9.21% 8.09% 14.28% 7.15%
4 RES 0% 14.28% 19.93% 1.49%
5 PTC 71.32% 56.34% 54.17% 57.78%
6 PTDEL 8.8% 3.98% 0% 59.96%

Table 4.5. Performance evaluation of four algorithms for two agents in a environment
AMM with a combination of tasks, medium frequency of arrival and medium deadline
tightness. Column 1 is row number; Column 2 describes the various comparison
criteria; Columns 3-6 represent each of the four algorithms; Rows 1 and 2 show the
average utility gain (AUG) and respective standard deviations (σ) per run; row 3
shows the percentage of the total 500 units spent on control actions(CT); row 4 is
percent of tasks rescheduled (RES); Row 5 is the percent of total tasks completed
(PTC);Row 6 is percent of tasks delayed on arrival (PTDEL)
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CHAPTER 5

REINFORCEMENT LEARNING STRATEGY

Can an agent automatically learn meta-level control policies for specific environ-
ments based on the high-level state information described in Chapter 3? Does this
learned policy outperform the corresponding hand-crafted policy for that environment
as described in Chapter 4? These are the two questions addressed in this chapter.

The high-level goal of this work is to create agents which can maximize the so-
cial utility by successfully completing their goals. These agents also necessarily have
limited computation, and detailed models of the task environments are not readily
available. Reinforcement learning is useful for learning the utility of these control
activities and decision strategies in such contexts. Section 5.3 describes the construc-
tion of a Markov decision process-based meta-level controller which uses reinforcement
learning techniques to approximate an optimal policy for allocating computational re-
sources. This approach to meta-level control implicitly deals with opportunity cost
as a result of the long-term effects of the meta-level decisions on utility. Sections 5.4
describes the complexities of the issues faced by multi-agent reinforcement learning
agents. Experimental results describing the performance of the learned polices in
both the single-agent and multi-agent cases are provided.

5.1 Reinforcement Learning
Reinforcement Learning [1, 36, 76, 77, 75, 84, 86] is a mathematical framework

used by agents to learn how to map situations to actions so as to maximize a nu-
merical reward signal. Supervised Learning (commonly used in research in machine
learning, statistical pattern recognition and artificial neural networks) is learning from
examples provided by a knowledgeable external supervisor. Reinforcement Learning
is different from supervised learning in that the agent does not learn what actions to
take from a “supervisor”. Instead the usual approach taken by reinforcement learn-
ing agents involves discovering which actions yield the most reward by trying them
out, associating expected reward values with different agent states, and using reward
values to choose actions.

Two key features of reinforcement learning are the exploration-exploitation trade-
off and credit assignment. A reinforcement learning agent, to maximize its reward,
must prefer (exploit) actions which it has tried in the past and found to be effective
in producing rewards. But to discover such actions, the agent has to try (explore)
actions it has not selected before. The agent should be able to explore the action space
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to make better action selections in the future while at the same time progressively
favor those actions that appear best.

The temporal credit assignment problem involves distributing rewards over a se-
quence of state-action pairs that lead up that reward. When actions are not rewarded
immediately but receive a large positive or negative reward some time later, it is called
delayed reinforcement. Reinforcement learning algorithms typically use a scheme for
assigning the appropriate credit to all preceding state-action pairs after receiving a
delayed reinforcement.

5.2 Markov Decision Processes
The following is a formal specification which captures the critical aspects of the

problem facing a learning agent interacting with the environment to achieve its goals.
Markov decision processes (MDPs) [56] are the standard reinforcement learning

framework. An MDP is defined via its state set S, action set A, transition probability
matrices P, and reward matrices R. On executing action a in state s the probability
of transitioning to state ś is denoted P a(sś) and the expected reward associated with
that transition is denoted Ra(sś). The rewards are non-negative for all transitions in
this work.

A rule for choosing actions is called a policy. Formally it is a mapping π from the
set of states S to the set of actions A. If an agent follows a fixed policy, then over
many trials, it will receive an average total reward which is known as the value of the
policy. In addition to computing the value of a policy averaged over all trials, we can
also compute the value of a policy when it is executed starting in a particular states
s. This is denoted V π(s) and it is the expected cumulative reward of executing policy
π starting in state s. This can be written as

V π(s) = E[rt+1 + rt+2...|st = s, π]

where rt is the reward received at time t, st is the state at time t, and the expec-
tation is taken over the stochastic results of the agent’s actions.

For any MDP, there exist one or more optimal policies which we will denote by
π ∗ that maximize the expected value of the policy. All of these policies share the
same optimal value function, which is written V ∗ The optimal value function satisfies
the Bellman equations [3]:

V ∗(s) = max
a

Σś P (ś |s, a)[R(ś |s, a) + V ∗(ś )]

where V ∗(ś) is the value of the resulting state ś. The sum on the right-hand-side
is the expected value of the one step reward R(ś |s, a) plus the value of the nest
state ś, which is the same as the backed-up value of a one-step lookahead search, and
the maxa is choosing the action with the best backed-up value. The sum is named
Q∗(s, a)
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Q∗(s, a) = (Σś P (ś |s, a)[R(ś |s, a) + V ∗(ś )]

This is the expected total reward that will be received when the agent performs
action a in state s and then behaves optimally thereafter. By substituting this into
the Bellman equation, it is shown that the value function is just the maximum (over
all the actions) of the Q function.

V ∗(s) = max
a

Q∗(s, a)

Consequently, this can be substituted in to the Q equation to obtain the Q version
of the Bellman equation.

Q∗(s, a) = Σś P (ś |s, a)[R(ś |s, a) + max
a

Q∗(ś , á )

5.3 Single Agent Meta-Level Control
The learning approach adopted for the meta-level control problem is based on the

algorithm developed in [72] where reinforcement learning is used in the design of a
spoken dialogue system. Their problem is similar to the meta-level control problem
in that it is also a sequential decision making problems and there is a bottle neck
associated with collecting training data. As described in the experimental setup in
Chapter 4, each episode lasting 500 simulation time clicks takes about 180 seconds
on a Intel Pentium(R) machine with four 1.80GHz processors running linux. It takes
about 150 hours to obtain data from 3000 training episodes making data collection
quite expensive.

As described in previous chapters, the MLC in making its decisions does not
directly use the information contained in the agent’s current state. This would include
quantitative information of tasks that are not yet scheduled, tasks that are partially
executed, the schedule of the primitive actions that is to be executed as well as
information of each primitive action for each time step. This leads to an exponential
state space. Instead the MLC uses a set of high-level qualitative features which is
constructed to abstract the real state information as much as possible without losing
critical information. The advantage of this approach is that it simplifies the decision
making process and provides the possibility for learning good rules.

The appropriate actions to take in each state are also defined. The reward function
is determined by the utilities accrued by each completed task. The meta-level control
policy is a mapping from each state to an action. An initial meta-level control policy
which randomly chooses an action at each state and collects a set of episodes from a
sample of the environment is implemented. Each episode is a sequence of alternating
states, actions and rewards. As described in [72], the transition probabilities of the
form P (s′|s, a) are estimated, which denotes the probability of a transition to state s′,
given that the system was in state s and took action a from many such sequences. The
transition probability estimate is the ratio of the number of times in all the episodes,
that the system was in s and took a and arrived at s′ to the number of times in all
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the episodes, that the system was in s and took a irrespective of the next state. The
MDP model representing system behavior for a particular environment is obtained
from state set, action set, transition probabilities and reward function. Confidence
in the accuracy of the model depends on the extent of exploration performed in the
training data with respect to the chosen states and actions. In the final step the
optimal policy in the estimated MDP is determined using the Q-value version of
the standard value iteration algorithm [75]. The expected cumulative reward (or Q-
value) Q(s,a) of taking action a from state s is calculated in terms of the Q-values of
successor states via the following recursive equation [75]:

Q(s, a) = R(s, a) + γ
∑

s′

P (s′|s, a) max
a′

Q(s′, a′)

When the value iteration algorithm converges1, an optimal meta-level control pol-
icy (according to the estimated model) is obtained by selecting the action with the
maximum Q-value at each state. The optimality of the policy depends on the ac-
curacy with which the estimated MDP represents the particular environment. The
summary of the proposed methodology is as follows:

1. Choose an appropriate reward measure for episodes and an appropriate repre-
sentation for episode states.

2. Build an initial state-based training system that creates an exploratory data
set. Despite being exploratory, this system should provide the desired basic
functionality.

3. Use these training episodes to build an empirical MDP model.

4. Compute an optimal meta-level control policy according to this MDP.

5. Reimplement the system using the learned meta-level control policy

5.3.1 Experiments
The experimental setup is as described in the previous chapter. The meta-level

control decisions that are considered in this single agent set up are: when to accept,
delay or reject a new task, how much effort to put into scheduling when reason-
ing about a new task and whether to reschedule when actual execution performance
deviates from expected performance. For all the experiments described in this dis-
sertation, the following costs are assumed. The meta-level control actions have an
associated cost of 1 time unit; the drop task and delay task actions take 1 time unit
also. The call to simple scheduler costs 2 time units and the cost of computation of
complex features costs 2 time units, the cost of detailed scheduling tasks with less

1The algorithm iteratively updates the estimate of Q(s,a) based on the current Q-values of neigh-
boring states and stops when the update yields a difference that is below a threshold

106



than five methods is 4 units, with less than ten methods is 12 time units and greater
than ten methods is 18 time units.

The agents in the experimental test-bed were implemented using the Java Agent
Framework (JAF) framework and situated in the Multi-Agent Survivability Simula-
tor (MASS) environment. A detailed description of JAF and MASS is provided in
Appendix A. Each agent simulation was run on a Intel Pentium(R) machines with
four 1.80GHz processors running linux. Each machine has 256 MB of memory and
connected via a fast-ethernet network interface.

The task environment generator randomly creates task structures while varying
three critical factors:

1. complexity of tasks c ε {simple(S), complex(C), combination(A)}

2. frequency of arrival f ε {high(H), medium(M), low(L)}

3. tightness of deadline dl ε {tight(T ), medium(M), loose(L)}.

Complexity of tasks refers to the expected utilities of tasks and the number of al-
ternative plans available to complete the task. Typically, complex tasks have higher
expected utility, higher expected durations and a greater number of alternatives than
simple tasks. A simple task has two primitive actions and its structure and number
of possible alternatives is similar to the AnalyzeRock task (Figure 1.6)described in
Chapter 1. The utility distribution and duration distribution of a simple task is within
a 5% range of the corresponding distributions of AnalyzeRock. A complex task also
has structure similar to that of GetImage task described in Figure 4.1. It has between
four and six primitive actions. The utility distribution and duration distribution of
a complex task is within a 5% range of the corresponding distributions of GetImage.
The combination value means that 50% of the tasks are simple and 50% are complex
tasks.

The frequency of arrival of tasks refers to the number of tasks that arrive within
a finite time horizon. The resource contention among the tasks increases as the
task frequency increases. Task arrival is is determined by a normal distribution with
µ = 250 and σ = 249. When the frequency of arrival is low, about one to ten tasks
arrive at the agent in 500 time unit horizon; when the frequency is medium, between
ten and fifteen tasks arrive at the agent; and when the arrival frequency is high,
fifteen to twenty arrive on average at the agent. The tightness of deadline refers to
the parameter defined in the previous section and it is task specific. The resource
contention is also proportional to the deadline tightness. If the deadline tightness is
set to low, the maximum available duration given to the task is between 120% and
150% of the expected duration of the task; if the deadline tightness is set to medium,
the maximum available duration given to the tasks is between 100% and 120% of
the expected duration of the task; and if the deadline tightness is set to high, the
maximum available duration is between 80% and 100% of the expected duration of
the task.

The training data for the RL strategy consisted of 3000 episodes. After the 3000
episodes were completed, the estimated transition probabilities and reward function
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Figure 5.1. Utility Comparison of Learning Method to Heuristic Strategies for four
different environments. The error bars are one standard deviation above and below
each mean

were determined. The meta-level control policy was determined using the Q-value
version of value iteration as described above in the algorithm.The policy was then
used on a test run consisting of 300 simulation test episodes.

The results described in Figure 5.1 show the utility accrued by the reinforcement
learning, SHS and NHS strategies for four environments AMM, AHT, AMT and
ALM. The data collection bottleneck described previously limited the number of
environments considered to four. The four environments were chosen to represent
problem classes where interesting behavior of meta-level control could occur: medium
constrained environments (AMM, ALM) and tightly constrained environments (AHT,
AMT). In loosely constrained environments, agents have enough resources to complete
tasks successfully within the deadlines with out too much contention of resources.
In all four environments, the RL strategy using the policy based on 3000 training
episodes did as well as if not significantly better (p < 0.05) than the SHS with respect
to utility but had significantly lower control duration.

Figure 5.2 describes the percent of total time spent on control actions. The RL
method spends significantly less time on control actions (p < 0.05) than the heuristic
strategies in all four environments. The RL optimizes its actions in a non-myopic
fashion since it can learn a more accurate model of the sequential decision making
process than the heuristic strategies.

Learning Curve Saturation: Figure 5.3 describes the effect of increasing train-
ing data on the performance of the learned policies. After every 1000 episodes, the
cumulative transition probabilities and reward function were estimated and the cor-
responding policy was computed. This policy was then applied to 300 test episodes
and the average results were computed. The performance of the agent improves
with added training but the improvement does not increase proportionately with the
training size. This seems to indicate that increased training data will not necessar-
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Figure 5.2. Control Time Comparison of Learning Method to Heuristic Strategies
for four different environments
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Figure 5.3. Relation of Average Utility to Increasing Training Data
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Figure 5.4. Relation of Control Time Durations to Increasing Training Data

Environment RL-3000 RL-2000 RL-1000 SHS NHS

AMM-UTIL 207.69 200.05 198.65 205.49 192.10
AMM-CT 18.39% 16.33% 18.14% 20.37% 23.92%

AMT-UTIL 155.56 145.11 140.57 117.34 117.25
AMT-CT 17.81% 17.31% 17.58% 24.95% 20.32%

AHT-UTIL 160.68 138.84 153.97 124.80 123.96
AHT-CT 26.83% 27.46% 23.17% 35.26% 34.09%

ALM-UTIL 140.32 130.09 119.64 135.05 124.74
ALM-CT 7.24% 6.84% 2.74% 10.11% 10.32%

Table 5.1. Utility and Control Time Comparisons over four environments; Column 1
is the environment type; Column 2, 3 and 4 represent the performance characteristics
of the RL policy after 3000, 2000 and 1000 training episodes respectively; Column 4
and 5 represent the performance characteristics of SHS and NHS respectively;

ily guarantee a monotonic improvement in performance and that the performance
improvement will flatten out after a certain amount of training. This threshold is
determined for each specific environment experimentally in this work. 3000 seemed
to be a good threshold for training size for the four environments described. The dip
the curve for AHT at episode 2000 is a local minima which occurred because of the
tightly constrained environment. Figure 5.4 describes the relation of the percent of
control durations to increasing training size.

Table 5.1 describes the actual values of the measures described in the preceding
discussion.

Significance of discounting: γ in the dynamic programming formulation de-
notes the discount factor. The discount factor determines how much value is given to
future rewards. When γ is set to 1.0, the agent gives a lot of importance to the long
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Figure 5.5. Utility Gains with varying discount rate (γ = 0.0, 0.5, 1.0). The error
bars are one standard deviation above and below each mean

term effects of its current decision. When γ is set to 0.0, the agent does a one-step
look ahead and is very myopic in its decision making. Figure 5.5 describes the utility
gained by the agent after 3000 training episodes. Three meta-level control policies
with γ set to 1.0, 0.5 and 0.0 are computed. These polices are then used to evalu-
ate 300 test episodes and the average utilities over these 300 episodes are computed.
Table 5.2 describes the values of the utility gained and the corresponding percent of
control time for the three different polices. Column 1 is the type of environment,
Column 2 describes the performance characteristics when the agent has a completely
myopic view (γ=0.0), Column 3 describes the performance characteristics and control
time when the agent has a partially myopic view (γ=0.5) and Column 4 describes the
performance characteristics when the agent gives a lot of priority to long term effects
of its decisions.

In medium constrained environments such as AMM and ALM, the average utility
gained using the policy with γ set to 1.0 is significantly better (p<0.05) than the
partially myopic policy with γ=0.5 and the myopic policy with γ=0.0. In tightly
constrained environments such as AMT and AHT, the difference in performance of
the non-myopic policy, the partially myopic policy and the myopic policy was not
significant at the 0.05 level. These environments are so tightly constrained and are too
dynamic to be able to effectively predict the future events and act on that information.

5.4 Multi-Agent Meta-Level Control
The agents in this domain are in a cooperative environment and have approximate

models of the others agents in the multi-agent system. The agents are willing to reveal
information to enable the multi-agent system to perform better as a whole. In this
dissertation, the interaction between 2 agents Fred and Barney is studied. The multi-
agent aspect of the problem arises only when there is task requiring coordination
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Environment γ=0.0 γ=0.5 γ=1.0

AMM-UTIL 185.19 190.46 207.69
AMM-CT 19.56% 18.63% 18.38%

AMT-UTIL 151.48 151.99 155.56
AMT-CT 17.95% 17.90% 17.80%

AHT-UTIL 149.40 154.26 155.56
AHT-CT 26.42% 26.23% 17.81%

ALM-UTIL 122.16 122.74 140.32
ALM-CT 6.88% 6.90% 7.24%

Table 5.2. Comparison of utility gain and percent of control time for four different
environments while varying the discount rate (γ = 0.0, 0.5, 1.0)

with another agent. The agent rewards in this domain are neither totally positively
correlated(team problem) nor are they totally negatively correlated(zero-sum game).
Multi-agent reinforcement learning has been recognized to be much more challenging
than single-agent learning, since the number of parameters to be learned increases
dramatically with the number of agents. In addition, since agents carry out actions
in parallel, the environment is usually non-stationary and often non-Markovian as
well [49]. The experiments in this chapter describe results on the convergence rates
of the policies of the two agents in simple scenarios.

5.4.1 Experiments
The meta-level control decisions that are considered in the multi-agent set up are:

when to accept, delay or reject a new task, how much effort to put into schedul-
ing when reasoning about a new task, whether to reschedule when actual execution
performance deviates from expected performance, whether to negotiate with another
agent about a non-local task and whether to renegotiate if a previous negotiation falls
through. For all the experiments described in this dissertation, the following costs are
assumed. The meta-level control actions have an associated cost of 1 time unit; the
drop task and delay task actions take 1 time unit also. The decision to negotiate and
whether to renegotiate also take 1 unit of time. The call to simple scheduler costs 2
time units and the cost of computation of complex features costs 2 time units, the
cost of detailed scheduling tasks with less than five methods is 4 units, with less than
ten methods is 12 time units and greater than ten methods is 18 time units.

The task environment generator in the multi-agent setup also randomly creates
task structures while varying three critical factors:

1. complexity of tasks c ε {simple(S), complex(C), combination(A)}

2. frequency of arrival f ε {high(H), medium(M), low(L)}

3. tightness of deadline dl ε {tight(T ), medium(M), loose(L)}.
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Figure 5.6. Average Utility Comparison between Heuristic Strategies and RL Strat-
egy (300 training episodes) in a Multiagent environment. The error bars are one
standard deviation above and below each mean

Complexity of tasks as described earlier refers to the expected utilities of tasks and
the number of alternative plans available to complete the task. A simple task, in the
multi-agent setup, has two primitive actions and its structure and number of possible
alternatives is similar to the AnalyzeRock task (Figure 1.6) described in Chapter 1.
The utility distribution and duration distribution of a simple task is within a 5% range
of the corresponding distributions of AnalyzeRock. A complex task in the multi-agent
set-up can be of two types, one has structure similar to ExploreTerrain task described
in Figure 1.6 and the other has structure similar to that of GetImage task described
in Figure 4.1. The utility distribution and duration distribution of a complex task is
within a 5% range of the corresponding distributions of ExploreTerrain or GetImage
task. The combination value means that 50% of the tasks are simple and 50% are
complex tasks. The frequency and deadline tightness are the same as in the single
agent setup.

Preliminary experimental results describing the behavior of two interacting agents
is presented in Figure 5.6 and Table 5.3. Agent Fred’s was fixed to the best policy
it was able to learn in the single agent environment. Agent Barney then learned its
meta-level control policy within these conditions.

Performance comparison of the heuristic strategies to the RL strategy in a sin-
gle environment, AMM, is provided. The results show that the combined utilities
of the two agents when using the RL strategy is as good as the SHS strategy which
uses environment characteristic information in its decision making process. The RL
strategy also learns policies which significantly outperform the NHS strategy in this
environment. The performance of the multi-agent system supports the hypothesis of
this dissertation. Further experimental studies to establish the advantage of auto-
matically learning meta-level control policies in multi-agent systems are ongoing.
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Environment RL-3000 SHS NHS

AMM-UTIL 118.56 111.44 89.84
AMM-CT 8.86% 9.21% 8.09%

Table 5.3. Utility and Control Time Comparisons over four environments; Column 1
is the environment type; Column 2, 3 and 4 represent the performance characteristics
of the RL policy after 3000, 2000 and 1000 training episodes respectively; Column 4
and 5 represent the performance characteristics of SHS and NHS respectively;

5.5 Summary
This chapter describes a reinforcement learning approach which equips agents to

automatically learn meta-level control policies. The empirical reinforcement learning
algorithm used is a modified version of the algorithm developed by [72] for a spoken
dialog system. Both problem domains have the bottle neck of collecting training data.
The algorithm optimizes the meta-level control policy based on limited training data.
The utility of this approach is demonstrated experimentally by showing that the
meta-level control policies that are automatically learned by the agent perform as
well as the carefully hand-generated heuristic policies. The sequential effects of the
problem domain was verified by showing that varying the value of future rewards
significantly affects the agent’s performance.
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CHAPTER 6

CONCLUSIONS

This dissertation explores the issue of meta-level control in complex agents situ-
ated in social and dynamic environments. As discussed in Chapter 1, complex agents
can concurrently perform several different goals of varying worth and deadlines, dy-
namically choose alternate ways to achieve these goals and make choices on how
much effort to spend on deliberative actions. Deliberations about the tasks may in-
volve resource-intensive computation. Also, the control decisions made by the agent
may have down-stream effects on the availability of resources and processing available
to future tasks. Meta-level control is the ability of an agent to optimize its long-term
performance by choosing and sequencing its deliberation and execution actions appro-
priately. It reasons about the cost of computation at all levels as a first-class entity.
This dissertation establishes the following hypothesis: Meta-level control with bounded
computational overhead allows complex agents to solve problems more efficiently in
dynamic open multi-agent environments. Meta-level control is computationally feasi-
ble through the use of an abstract representation of the agent state. This abstraction
concisely captures critical information necessary for decision making while bounding
the cost of meta-level control and is appropriate for use in automatically learning the
meta-level control policies.

6.1 Main Results
A meta-level agent architecture for bounded-rational agents which supports al-

ternative approaches for deliberative computation is described in Chapter 3. The
meta-level control has limited and bounded computational overhead and supports
reasoning about about costs of planning, scheduling and negotiation as first-class en-
tities. Accounting for costs of reasoning at all levels is necessary for guaranteeing the
performance characteristics of real-time systems. An experimental testbed to evalu-
ate the agent performance was set up using the MASS simulation environment where
the architecture described was fully implemented. Tasks of varying complexity were
used to study the performance of the architecture using various policies for meta-level
control. A deterministic policy was used as a base-line for evaluation. This chapter
also included a discussion of how adjustable autonomy emerges as a feature of an
agent equipped with meta-level reasoning. An agent while deciding to trade-off de-
liberation versus execution action is in effect reasoning on whether to retain control
of its resources or to decide to perform a task to gain the associated utility while
at the same time giving up control of the required resources. One of the interesting
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contributions of this work is the way it exploits knowledge of the tasks from the task
structures. The state features are computed using thresholds which are specific to
the task being analyzed.

Chapter 4 establishes that meta-level control in resource-bounded rational agents
is beneficial using empirical evidence. Two context sensitive hand-generated heuristic
strategies are defined: the Naive Heuristic strategy (NHS) that uses myopic infor-
mation to make meta-level control action choices; and the Sophisticated Heuristic
strategy (SHS) that uses current state information and predictive information about
the future to make non-myopic action choices. The heuristic strategies significantly
outperform (p<0.05) deterministic and random strategies by about 30% on average
confirming the importance of meta-level control. I also experimentally show that a
few abstract features which accurately capture the state information and task ar-
rival model enable the meta-level control component to make computationally-bound
decisions which significantly improve agent performance.

Chapter 5 provides insight into the usefulness of reinforcement algorithms in com-
plex multi-agent sequential decision-making problems. A reinforcement learning ap-
proach which equips agents to automatically learn meta-level control policies is de-
scribed. This empirical algorithm is a modified version of the algorithm developed
by [72] for a spoken dialog system. Both problem domains have the bottle neck
of collecting training data. The algorithm optimizes the meta-level control policy
based on limited training data consisting of 3000 runs. The utility of this approach is
demonstrated experimentally by showing that the meta-level control policies that are
automatically learned by the agent perform as well as if not better than the carefully
hand-generated heuristic policies at the p<0.05 level. One surprising and useful result
was that the agents were able to learn useful meta-level control policies with a small
amount of training (3000 episodes). The improvement in performance was about 60%
in the best case over the heuristic strategies. The sequential effects of the problem
domain was verified by showing that varying the value of future rewards significantly
affects the agent’s performance.

6.2 Applying this work
This dissertation shows that meta-level control can be effective in real-time envi-

ronments, characterized by uncertainty and limited computational resources. In these
environments, computational commodities such as time, memory, or information can
be traded for gains in the value of computed results. It also shows that efficient
and inexpensive meta-level control which reasons about the costs and benefits of
alternative computations leads to improved agent performance in resource-bounded
environments. This is a flexible, run-time approach which seeks to optimize rather
than satisfice solution quality.

This dissertation also shows that a meta-level control policy can be learned in
a non-deterministic, inaccessible and model-free environment. In an inaccessible en-
vironment, an agent must maintain some internal state to try to keep track of the
environment, since it is not possible for states to identified just based on percepts.
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The learning strategy described in this dissertation allows for meta-level control in
uncertain environments whose model is not available. The empirical reinforcement
learning algorithm described in this dissertation, allows the agent to construct a
partial model of the environment and use the information to define effective action
policies.

Additionally, the dissertation has identified scenarios in which predictive informa-
tion about future task arrivals has limited utility. If the environment is characterized
by high frequency of arrival of tasks with tight deadlines, then the meta-level con-
troller will constantly have to reevaluate its decisions every time a new task arrives.
These decisions are valid when made within a myopic context because of the dynamic
environment. Hence predictive information about the future does not necessarily im-
prove performance. If the environment is characterized by low frequency of arrival of
tasks and the tasks have loose deadlines, then the environment is loosely constrained.
In such environments, the downstream effects of decisions is minimal, since the tasks
are spaced out enough so that there is minimal contention of resources by multi-
ple tasks. This means predictive information about the future does not provide any
additional performance advantage.

6.3 Future Extensions
1. Feature Learning

In Chapter 4, I present the general criteria which can be used to choose high-level
state features which facilitate meta-level control. I’m interested in equipping
the agents to learn these state features automatically. This would allow agents
to fine-tune the meta-level control process to particular application domains
and also determine the subset of features that are critical to specific meta-level
decisions. Standard learning techniques like C4.5 could be used for the feature
learning process.

In this work, each state feature can take on one of three qualitative values. The
number of values was manually set although the mapping from quantitative
values to these qualitative buckets was determined offline for each environment.
It will also be interesting to allow the agent to learn the optimal number of
qualitative values as well as the mapping from qualitative to quantitative values
for each environment.

2. Scalability, Robustness and Safety

Uncertainty is ubiquitous in the problem domains discussed in this dissertation.
It is necessary to leverage this uncertainty at all levels of reasoning [57]. It is
also important that meta-level control take into consideration the robustness
and safety of its systems while making its decisions. Some domains are more
risk-averse than others and the learning mechanism in the meta-level control
can be provided the knowledge of scenarios which will be unacceptable in both
the training and testing phase. The meta-level control strategies described here
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are scalable in theory. I plan to verify this by scaling up the episode lengths;
increasing the number of agents in the multi-agent system; and increasing the
durations of tasks so that there are more interactions and resource contentions
among tasks.

3. Abstraction in Control Reasoning:

Abstraction information of tasks allows meta-level control to make quick and
effective decisions on tasks. Abstraction information such as expected quality
distribution, expected duration distribution, and expected duration uncertainty,
of each task are determined manually in this work. I would like to construct
algorithms which can automate this task abstraction process. There are two
types of analysis that seem feasible: semantic analysis of tasks where the clus-
tering algorithms can be used to cluster parts of the tasks structures which do
not need explicit distinction and those which do; and statistical analysis where
the agent will systematically vary the performance criteria and gather statistics
on the task performance characteristics and then construct task abstractions.
It will be interesting to study if the two types of analysis lead to equivalent task
abstractions.

4. Meta-level Control in Multi-Agent Organizational Design

One of the most important characteristics of large-scale multi-agent systems
is their organization - the description of how, when and with whom member
agents should interact. The type, number and qualities of these relationships
can have a large impact on the effectiveness of both individual agents and
the system as a whole. In dynamic or failure-prone environments, the task of
keeping the organization efficient and coherent can be quite difficult. The cost
of reorganization can be significant in some cases. Meta-level control techniques
which reason about costs and resource consumption like those described in this
dissertation can make quick, inexpensive decisions on when it is necessary to
reorganize and how much effort to invest into the reorganization and which
parts of the organization need to be re-evaluated.

5. More Complex Alternatives for Control

I would also like to construct a wider range of alternatives for scheduling/planning
as well for interactions which require coordination with other agents. The ability
of meta-level control and state features to scale up to more complex environ-
ments will be studied.

6. Performance Upper Bounds

Computing an optimal meta-level control policy for the problem described in
this dissertation is NP-hard. A very loose upper bound of utility gained would
the sum of the expected utilities of all the tasks which arrive at the agents.
However, the deadlines and the finite horizon of the problem do not allow for
all tasks to be completed even in the most optimistic case. It is important to
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compare the performance of the learning and heuristic strategies to an approx-
imately optimal policy. A branch-and-bound technique to determine a more
feasible upper bound for agent performance is currently being designed.
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APPENDIX A

TOOLS AND FRAMEWORKS

TÆMS Modeling Language
TÆMS (Task Analysis, Environment Modeling, and Simulation) is a domain inde-

pendent task modeling framework used to describe and reason about complex prob-
lem solving processes. TÆMS models are used in multi-agent coordination research
[18, 83] and are being used in many other research projects, including: Cooperative-
Information-Gathering [53, 43], collaborative distributed design [20], distributed sit-
uation assessment [11], surviveable systems [81], multi-agent diagnoses [2], intelligent
environments [44], hospital patient scheduling [17], and coordination of software pro-
cess [35]. Typically a problem solver represents domain problem solving actions in
TÆMS, possibly at some level of abstraction, and then passes the TÆMS models
on to agent control problem solvers like the multi-agent coordination modules or the
Design-to-Criteria scheduler.1

TÆMS models are hierarchical abstractions of problem solving processes that de-
scribe alternative ways of accomplishing a desired goal; they represent major tasks
and major decision points, interactions between tasks, and resource constraints but
they do not describe the intimate details of each primitive action. All primitive ac-
tions in TÆMS, called methods, are statistically characterized in three dimensions:
quality, cost and duration. Quality is a deliberately abstract domain-independent con-
cept that describes the contribution of a particular action to overall problem solving.
Thus, different applications have different notions of what corresponds to model qual-
ity. Duration describes the amount of time that the action modeled by the method
will take to execute and cost describes the financial or opportunity cost inherent in
performing the action. With the addition of uncertainty modeling, the statistical
characteristics of the three dimensions are described via discrete probability distri-
butions associated with each method. The uncertainty representation is also applied
to task interactions like enablement, facilitation and hindering effects.2 Thus agents
may not only reason about the certainty of actions, e.g., “method A will fail 10% of

1In the process work, a translator transforms and abstracts process programs into TÆMS task
structures for scheduling and coordination.

2Facilitation and hindering task interactions model soft relationships in which a result produced
by some task may be beneficial or harmful to another task. In the case of facilitation, the existence
of the result, and the activation of the nle generally increases the quality of the recipient task or
reduces its cost or duration.
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Figure A.1. Information Gathering Task Structure

the time,” but also with respect to the interactions, e.g., “10% of the time facilitation
will increase the quality by 5% and 90% of the time it will increase the quality by
8%,” and the joint of these two. (Since interaction effects are dependent on the qual-
ity of the originator of the effect.) The quantification of methods and interactions in
TÆMS is not regarded as a perfect science. Task structure programmers or problem
solver generators estimate the performance characteristics of primitive actions. These
estimates can be refined over time through learning and reasoners typically replan
and reschedule when unexpected events occur.

To ground further discussion, consider Figure A.1, which is a slightly more com-
plete view of the information gathering task structure introduced in Figure A.2. The
top-level task in this structure is Recommend-a-High-End-PC-System and it has two
subtasks: one that pertains to finding information about products and constructing
models of them, Build-Product-Objects, and one for making the decision about which
product to purchase, Make-Decision. The two tasks are governed by a seq last() qaf.
Qafs specify how the quality of the subtasks is related at the parent task. They may
also specify orderings among the subtasks. Let T denote a task, ci denote one of its
children, and let n denote the number of children of T . Let q denote the quality of
the item in question, e.g., Tq is the quality of the task and ciq is the quality of the
ith child of T . In TÆMS, the quality of any task or method before performance (or
after failure) is zero. A sampling of the qafs defined in TÆMS includes:

• sum: Tq =
∑n

i=1 ciq and any of the subtasks may be performed (power-set minus
empty-set) in any order.

• sum all: Tq =
∑n

i=1 ciq and all subtasks are to be performed in any order.

• min: Tq = min(c0q
, c1q

, .., cnq
) and all subtasks are to be performed in any order.

Since all tasks have zero initial quality, failure to perform a given child under a
min results in zero quality for the parent task.
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• max: Tq = max(c0q
, c1q

, .., cnq
) and any number of subtasks may be performed

in any order, though generally only one task is selected.

• exactly one: Tq = (c0q
EXOR c1q

EXOR cnq
) and only one of the subtasks

may be performed.

• seq: Tq = cnq
and all subtasks must be performed in order.

• seq sum, seq min, seq max: The seq prefix in this case denotes sequence prefer-
ence and that all subtasks must be performed; the suffix denotes the function
to perform with the resultant qualities, e.g., seq sum indicates Tq =

∑n
i=1 ciq

Recommend-a-High-End-PC is thus performed by performing each of its subtasks,
in order, and its quality is determined by the Make-Decision subtask. This models
the fact that the decision process takes into consideration the quality, coverage, and
certainty of the information used to make the decision and reflects these attributes
in the quality of its output. As discussed, Build-Product-Objects is performed by
performing each of its child tasks, in order, and its quality is the sum of its children’s
qualities. In contrast, Get-Basic and Gather-Reviews can be achieved by performing
any one or more of their respective child tasks. Note the enables interaction between
Get-Basic and Gather-Reviews. This nle models a hard precedence relationship be-
tween the tasks – the agent must first successfully learn about products before it can
locate reviews for them. In TÆMS, task interactions are triggered by conditions in
the originator and the effects of the interactions are reflected in the quality, cost, and
duration distributions of the recipient. With the addition of uncertainty to TÆMS,
soft interaction effects like facilitation and hindering, are also quantified via proba-
bility distributions. Task interactions in TÆMS include: facilitates, hinders, bounded
facilitates, sigmoid, enables, and disables.

Outcomes, in TÆMS model situations in which a given method has different
classes of possible results, each class having its own distinct quality, cost, and duration
characteristics and possibly even its own interactions with other tasks. The Build-
Product-Objects task in Figure A.1 illustrates the outcomes construct3; the outcomes
serve to indicate the number of objects generated during the information gathering
phase. Attached to each of these outcomes are hindering and facilitation soft nles
that affect the quality, cost, and duration of the decision making task. This models
the notion that the time required to make the decision increases as more products
are compared, but, that the decision process benefits in terms of quality by having
more products.

TÆMS also supports modeling of tasks that arrive at particular points in time,
individual deadlines on tasks, earliest start times for tasks, and non-local tasks (those

3The actual information gathering task structure does not incorporate outcomes at the task
level. This example is a conceptual abstraction of the class of task structures produced by the
agent’s planner and is simplified for example purposes. Outcomes at the task level have semantics
that are difficult to specify.
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Figure A.2. Simplified Subset of an Information Gathering Task Structure

belonging to other agents). Obviously, scheduling TÆMS task structures is a non-
trivial process. In the development of TÆMS there has been a constant tension
between representational power and the combinatorics inherent in working with the
structure. The result is a model that is non-trivial to process and schedule in any
optimal sense, but also one that lends itself to flexible and approximate processing
strategies.

Design-to-Criteria Scheduling
Design-to-Criteria (DTC) scheduling is the soft real-time process of finding an

execution path through a hierarchical task network such that the resultant schedule
meets certain design criteria, such as real-time deadlines, cost limits, and quality
preferences. Casting the language into an action-selecting-sequencing problem, the
process is to select a subset of primitive actions from a set of candidate actions, and
sequence them, so that the end result is an end-to-end schedule of an agent’s activities
that meets situation specific design criteria. The scheduling problem is exponential
and complicated by the existence of task interactions, i.e., primitive actions may
not be independent, and by the existence of individual constraints on the primitive
actions, e.g., individual deadlines, cost limits, earliest start times, and quality require-
ments. The combinatorics of the scheduling problem are controlled through the use
of approximation, satisficing, goal-directed problem solving, and heuristics for action
ordering, as discussed in [82].

The Design-to-Criteria scheduling problem is framed in terms of a TÆMS [18, 83]
task network, which imposes structure on the primitive actions and defines how they
are related. The most notable features of TÆMS are its domain independence, the
explicit modeling of alternative ways to perform tasks, the explicit and quantified
modeling of interactions between tasks, and the characterization of primitive actions
in terms of quality, cost, and duration. TÆMS is described in greater detail in
Section A, however, to ground further discussion consider the TÆMS task structure
shown in Figure A.2. The task structure is a conceptual, simplified sub-graph of
a task structure emitted by the BIG [43] information gathering agent; it describes
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Figure A.3. Different Schedules Produced for Different Design Criteria

a portion of the information gathering process. The top-level task is to construct
product models of retail PC systems. It has two subtasks, Get-Basic and Gather-
Reviews, both of which are decomposed into primitive actions, called methods, that
are described in terms of their expected quality, cost, and duration. The enables arc
between Get-Basic and Gather is a non-local-effect (nle) or task interaction; it models
the fact that the review gathering methods need the names of products in order to
gather reviews for them. Get-Basic has two methods, joined under the sum() quality-
accumulation-function (qaf), which defines how performing the subtasks relate to
performing the parent task. In this case, either method or both may be employed
to achieve Get-Basic. The same is true for Gather-Reviews. The qaf for Build-
PC-Product-Objects is a seq sum() which indicates that the two subtasks must be
performed, in order, and that their resultant qualities are summed to determine the
quality of the parent task; thus there are nine alternative ways to achieve the top-level
goal in this particular sub-structure.

Three different schedules for achieving the top-level goal of the task structure,
produced for three different sets of design criteria, are shown in Figure A.3. Schedule
A is constructed for a client who needs a high quality solution, requires the solution
in seven minutes or less, and who is willing to pay for it. Schedule B is constructed
to suit the needs of a client who has plenty of time and is willing to wait for a
high quality solution, but who also has no money. Schedule C is constructed for a
client who has neither time nor money. Even this example illustrates the notion of
quantified choice in TÆMS and how the Design-to-Criteria methodology leverages
the quantification to build different schedules for different contexts. However, this
simple example also illustrates a weakness in TÆMS as presented in Figure A.2 – a
weakness that is carried forward to the scheduling process and consequently to the
schedules returned to the client. The initial design of TÆMS included only expected
value modeling of primitive actions and task interactions. Subsequently, the authors
have understood the strength of explicit modeling of uncertainty and the implications
of these new models to the Design-to-Criteria scheduling process.

Prior to delving into an intellectual discussion of the role of uncertainty, consider
the simplified task structure revised to include uncertainty, Figure A.4, in the charac-
terizations of the primitive actions. In the enhanced task structure, primitive actions
are characterized statistically via discrete probability distributions rather than ex-
pected quality values. The quality distributions model the probability of obtaining
different quality results and the possibility of failure (indicated by a zero quality re-
sult). Note that the expected values of these distributions are the same as those in
the previous expected-value model, thus the structures are directly comparable. The
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Figure A.4. Simplified Subset of an Information Gathering Task Structure

Schedule A′
PC-Connection Consumers-Reports

Quality distribution (sum of TGs): (0.20 0.0)(0.20 10.0)(0.60 40.0)
    Expected value:  26.00
    Probability q or greater:  0.60
Cost distribution (sum of methods costs): (1.00 2.0)
    Expected value:  2.00
    Probability c or lower:  1.00
Finish time distribution (finish time of last method): (0.45 4.0)(0.45 5.0)(0.05 6.0)(0.05 7.0)
    Expected value:  4.70
    Probability d or lower:  0.45

Schedule O - Optimal Schedule
PC-Mall Consumers-Reports

Quality distribution (sum of TGs): (0.10 0.0)(0.22 8.5)(0.67 38.5)
    Expected value:  27.90
    Probability q or greater:  0.67
Cost distribution (sum of methods costs): (1.00 2.0)
    Expected value:  2.00
    Probability c or lower:  1.00
Finish time distribution (finish time of last method): (0.09 5.0)(0.09 5.5)(0.72 6.0)
                                                                                     (0.01 7.0)(0.01 7.5)(0.08 8.0)
    Expected value:  6.05
    Probability d or lower:  0.90

Figure A.5. Uncertainty Representation Changes Optimal Schedule

cost and duration distributions represent the different possible costs and durations
of the actions. This level of detail can be very important when reasoning about the
gathering process. For example, in the enhanced model, it is clear that the method
for querying and extracting text obtained from the PC-Connection site has a higher
probability of failure than the method for querying and extracting text obtained from
the PC-Mall site. In the original model, the detail is lacking and it is impossible to
ascertain which method is more likely to fail.

The schedules shown in Figure A.5 illustrate the value of uncertainty in this
model from a scheduling perspective. Schedule A′ is identical to Schedule A from the
expected value case (Figures A.2 and A.3), however, with the addition of uncertainty
to the model, the scheduler can propagate uncertainty and create better estimates for
the performance characteristics of the schedules. Note that the quality distribution for
Schedule A′ includes a 20% chance of failure. In fact, with the addition of uncertainty
to the model, analysis shows that Schedule A is no longer the optimal schedule for the
client (who needs a result in 7 minutes or less and is willing to pay for it). Instead
Schedule O (Figure A.5) is the optimal choice. Even though the PC-Connection
method has a higher expected value, the PC-Mall method has a lower probability
of failure. Since a failure in one of these methods precludes the execution of Query-
Consumers-Reports (via the task interaction), the issue of failure is not local to the
methods but instead impacts the schedule as a whole. Thus, when uncertainty is
modeled and propagated during the scheduling process, Schedule O is the optimal
schedule as it has the highest net expected quality value and it still meets the client’s
deadline constraint.
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This example conceptually illustrates one aspect of the value of uncertainty in the
task models and in the scheduling process – better models lead to better schedules.
The authors believe that representing and reasoning about uncertainty is one of the
keys to scheduling computational structures in uncertain environments. This is par-
ticularly true when quality requirements and time and cost constraints are present.
Additionally, with the inclusion of uncertainty modeling and propagation it is clear
that there are many different dimensions and aspects of utility that can be used to
evaluate the appropriateness of schedules. Consider the task of gathering informa-
tion via the highly uncertain WWW to support a decision about the purchase of a
new automobile. Certain clients may prefer a risky information gathering plan that
has a potentially high pay-off in terms of information gathered, but also has a high
probability of failure. Other, more risk averse clients might prefer a course of action
that results in a lower pay-off in exchange for more certainty about the pay-off and
a lower probability of failure. Integrating notions of uncertainty in to the schedule
evaluation process is one aspect of this work.

This is work by Tom Wagner.

MASS - Multi Agent Survivability Simulator
The Multi Agent Survivability Simulator (MASS) provides a concrete, re-runnable,

well-defined environment to test multi-agent coordination/negotiation. The goal is
to provide a distributed simulation system to test various coordination mechanisms
allowing the elements of the system to detect, react and adapt to adverse working
conditions. The assumption is that the system is composed of a group of autonomous
agents. Each agent has its own local view of the world and its own goals, but is
capable of coordinating these goals with respect to remote agents.

The simulator is designed as a central process; all agents involved with the model
are connected to the simulator using sockets. The agents themselves are independent
processes, which could run on physically different machines. Time synchronization
is controlled by the simulator, which periodically sends a pulse to each of its remote
agents. Each agent has a local manager which converts the simulation pulse into real
CPU time. The manager controls the process and records the time spent scheduling,
planning, or executing methods. Note that the simulator does not control the agents’
activities, it merely allocates time slices and records the activities performed by the
agent during the time slice via an instrumentation interface. Once the alloted CPU
time has been used, the manager halts the agent and sends an acknowledgment mes-
sage back to the simulator. The simulator waits for all acknowledgments to arrive
before sending a new pulse (so all processes are synchronized). Using this method,
any functions (even computationally long ones) can be executed using whatever pulse-
granularity is desired (i.e., if one wishes to simulate an agent environment where all
planning actions are completed in a single time pulse, the pulse-granularity is defined
by the longest running planning action). For example, a planning phase may explore
a very large space search, but the simulated time required may be just one pulse.
Since all remote processes are frozen until the planning is completed, this gives the
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illusion that the planning was actually performed very quickly. Each agent therefore
has its own task-specific time transformation function, which it uses to convert each
simulator pulse into local CPU time. However, the clock mechanism works at the
other end of the spectrum, too. If one wishes to study actual planning times, where
slower planners take longer, or agents executing on slower machines take longer, then
the pulse-granularity is smaller and a tick may correspond to a second in real time or
CPU time.

The simulator is also a message router, in that all agent communications will pass
through it. This scheme permits explicit control over network and communication
delays. In this way, if one wants to simulate a very fast communication path, the
simulator may immediately re-send a message to its destination; but if one wants to
simulate a compromised network, the simulator may wait n pulses before sending the
message. This method also allows an agent to broadcast a message to all other agents
without explicitly knowing the number of agents that will receive the message.

The simulator behavior is directed by a queue containing a time-ordered list of
events. Each message it receives either adds or removes events from the queue. At
each pulse the simulator selects the correct events and realizes their effects (for ex-
ample, a network may slow down). Only after the effect of each event has been
completely determined is the timing pulse sent to each agent. Primitive actions in
TÆMS called methods,are characterized statistically via discrete probability distri-
butions in three dimensions: quality, cost, and duration. Agents reason about these
characteristics when deciding which actions to perform and at what time.

When an agent wants to execute a method, it sends a message to the simulator
with the method name. The simulator then retrieves the method from the objective
TÆMS database. Agents schedule, plan, and interact using a subjective view of the
methods. The subjective view differs from the objective view because agents may have
an imperfect model of what will actually happen, performance-wise, when the method
is executed. For example, for a method that involves retrieving data from a remote
site via the WWW, the remote site’s performance characteristics may have changed
since the agent learned them and thus the agent’s view of the execution behavior of
that method, namely its duration, is imperfect. In a simulation environment, both
the subjective and the objective method views are created by the simulator / task
generator and the objective, or true, views of the methods are stored in the simulator’s
TÆMS database. Thus when an execution message arrives, the simulator must obtain
the objective view of the method before any other steps may be taken. The first step
of the simulator is to calculate the value of the cost, duration and quality that will
be ”produced” by this execution. The duration (in pulse time) is used to create an
event that sends to the agent the results in terms of cost and quality. Any event
realized before the newly queued event is performed may change the results of the
newly queued event’s ”execution.” For example, a network breakdown event at the
front of the queue may increase the time of all the simulated executions that follow
it in the queue, by 100%. Thus subsequent method completion events are delayed.

This interaction effect is also possible because of the interactions between the
methods themselves. For example, if one method enables another method, and the
first method fails, then the other method may no longer be executed or executing the
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method will produce no result. If both methods are already ”scheduled” in the event
queue, and the first method fails, then the event associated with the second method’s
execution must be changed.

The random generator used to calculate the cost, duration and quality values
is seeded by a fixed parameter or by a random number (depending on the current
time). The solution of seeding by a fixed parameter is used to in order to obtain
a deterministic simulation. Our random generator produces the same answer if the
same seeding value is used. The goal is to compare different agent coordination
mechanisms on the same problem using the same simulation. To test a particular
coordination mechanism on several problems, the authors use a seeding based on the
current time that guarantees that two simulations do not produce the same solution.

This simulator was designed and implemented by Regis Vincent and Bryan Hor-
ling.

JAF - The Java Agent Framework
Java Agent Framework (JAF) is a component-based framework to define agents

working within the Mass environment. It effectively isolates the agent-dependent
behavior logic from the underlying support code which would be common to all of
the agents in the simulation. One goal of the framework is therefore to allow an
agent’s behavioral logic to perform without the knowledge that it was operating under
simulated conditions, e.g. a problem solving component in a simulated agent would
be the same as in a real agent of the same type. The framework is also flexible
and extensible, and yet maintains separation between mutually dependent functional
areas to the extent that one could be replaced without modifying the other.

Component based architectures are a relatively new arrival in the field of software
engineering which build upon the notion of object-oriented design. They attempt to
effectively encapsulate the functionality of an object while respecting interface con-
ventions, thereby enabling the creation of stand alone applications by simply plugging
together groups of components. This paradigm is ideal for our agent framework, be-
cause it permits the creation of a number of common-use components, which other
agent-dependent components can easily make use of.

JAF is based on Java Beans, Sun Microsystem’s component model architecture.
Java Beans supplies JAF with a set of design conventions, which provides behavior
and naming specifications that every component must adhere to. Specifically, the
Java Beans API gives JAF a set of method naming and functional conventions which
allow both application construction tools and other beans to easily manipulate a
component’s state and make use of its functionality. JAF also makes heavy use of
Java Bean’s notion of event streams, which permit dynamic interconnections to form
between stream generating and subscribing components.

JAF builds upon the Java Beans model by supplying a number of facilities de-
signed to make component development and agent construction simpler and more
consistent. Mechanisms are provided to specify and resolve both data and inter-
component dependencies. These methods allow a component, for instance, to specify
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that it can make use of a certain kind of data if it is available, or find and make use
of other components in the agent. More structure has also been added to the exe-
cution of components by breaking runtime into distinct intervals (e.g. initialization,
execution, etc.) with associated behavioral conventions during these intervals.

To date, more than 27 JAF components have been built, ranging from simple
logging tools to a contract-net based mobile robot problem solver. A sample of these
are:

1. Control : Provides initialization facilities and runtime state conventions and
control.

2. State : Serves as a central repository for data storage and retrieval within the
agent. Also assists with component discovery.

3. Log : Provides multi-level logging facilities.

4. Execute : A generic interface for enabling real or simulated behaviors.

5. Communicate : Supports multiple incoming or outgoing TCP streams, with
heterogenous message encodings.

6. PreprocessTaemsReader : Wraps the taems preprocessor, which uses a marked
up version of textual Taems to produce task structures for the agent.

7. Observe Simple periodic or event-based engine allowing statistics to be gathered
on the agent’s internal activities.

8. LogViewer An extensible log visualization tool which can show a consolidated,
multi-agent view of agent activities in real time.

This framework was defined and implemented by Bryan Horling.
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APPENDIX B

ALTERNATE FORMAL DEFINITION

The following is an alternate formal definition to the meta-level control problem.
A decision theoretic definition of the problem was presented in Chapter 1.

The goal of the meta-level controller is to determine an optimal control policy for
intermixing domain and control activities for the set of tasks over a given horizon. The
decisions include determining whether, when and how to execute each of the domain
tasks when there is the option to spend more or less time on control or reasoning
about these activities.

An agent receives external requests to achieve goals.

1. Gi is a goal of a specific type i.

2. Gik is the kth goal received by the agent.

3. When a goal is received by an agent, it is added to the new goal list. NGLIST (t)
is the set of goals on the new goal list at time t. It is constructed dynamically;
a goal is added when it arrives into the system and it is removed when it is
reasoned about by the meta-level controller. A goal which is removed can be
dropped, added to a waiting list called agenda or can be sent to the control com-
ponent for scheduling. Multiple goals in the new task list are reasoned about
sequentially.

4. Gik has an associated arrival time AT (Gik), an externally specified earliest
start time EST (Gik) and a deadline DL(Gik).

5. An agent at any instant of time t has an agenda of goals. An agenda is con-
structed dynamically; an old goal is removed when it is scheduled for execution
or a decision to drop it is made, and a new goal is added to the set when a
decision to do so is made. There is a probabilistic model of goal arrivals for
each agent. AGENDA(t) is the set of goals on the agenda at time t. These
are goals which have arrived at the agent but are yet to be reasoned about and
scheduled.

A domain activity is a procedure for solving a goal.

1. For each goal Gi, there are ni alternative domain activities which can solve it.
T

j
i is the jth alternative domain activity which which can solve goal Gi.
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2. Each alternative T
j
i has an expected utility EU(T j

i ) and expected duration
associated with it ED(T j

i ).

3. T ak
ik

represents the domain activity that is chosen to solve goal Gik .

4. The domain activities which have a higher expected duration, have a higher
expected utility. The alternatives are ordered in increasing order of duration.

∀i, j ≤ k, ED(T j
i ) ≤ ED(T k

i ) ∧ EU(T j
i ) ≤ EU(T k

i )

5. ACTIV E(t) is the set of domain activities currently executing as well as those
which have been scheduled and are waiting to be executed at time t.

6. A domain activity T
ak
ik

which is in ACTIV E(t) at time t has a starting time
ST (T ak

ik
) and a expected finishing time EFT (T ak

ik
).

7. When a particular alternative T
j
i for a goal is executing, Dused(T

ak
ik

, t) is the
total processor time used by the alternative at time t, Uacc(T

ak
ik

, Dused(T
ak
ik

, t))
is the utility accrued for that duration and Dleft(T

ak
ik

, t) is the expected time
left to complete execution of the alternative at time t.

8. When an alternative for the goal has completed execution, its finish time is
denoted FT (T ak

ik
), duration in terms of processor time taken by alternative at

finish time is Dused(T
ak
ik

, FT (T ak
ik

)) and the utility accumulated by the alternative
at the finish time is Uacc(T

ak
ik

, FT (T ak
ik

)).

9. Execution of a domain activity is a function which requires as input a set of
domain activities along with their start times and expected finish times. Its
output is the finish time and the utility accrued at that finish time for each
activity. EXECUTE DTASKS({< T ak

ik
, ST (T ak

ik
), EFT (T ak

ik
) >}) is denoted

by OUTPUT DTASKS

Suppose D1 = Dused(T
ak
ik

, FT (T ak
ik

))

OUTPUT DTASKS = {< D1, Uacc(T
ak
ik

, D1), FT (T ak
ik

) >}

10. If at time t, T ak
ik

εACTIV E(t) and ST (T ak
ik

) ≤ t, then

EXECUTE DTASKS({< T ak
ik

, ST (T ak
ik

), EFT (T ak
ik

>}))

is executed until interrupted.

11. Domain activities are interleaved by the execution component with control ac-
tivities.

12. Domain activities can be interrupted by control activities.
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A control activity determines whether, how and when domain activities can
be performed. Control activities also have alternative ways in which they can be
accomplished. Suppose there are N different alternatives to complete a control activity
in an environment. Cn represents an alternative for completing the control activity
where 0 ≤ n ≤ N − 1

1. Each alternative Cn has a expected duration associated with it ED(Cn).

2. Control activities do not produce utility. However, they are necessary for gen-
erating the sequence of domain activities which on execution produce utility.

3. Alternatives for a control action vary in their expected durations and ordered
by increasing values of their duration.

∀p ≤ q ≤ N − 1, ED(Cp) ≤ ED(Cq)

4. Suppose the total number of control activities executed by an agent is M . A
control activity that is in execution is represented as Cn

m and it stands for the
nth alternative of the mth control activity such that 0 ≤ m ≤ M − 1.

5. When a particular alternative Cn
m for an activity is executing, Dused(C

n
m, t) is

the total processor time used by the alternative at time t.

6. SCHEDULED TASKS(Cn
m) is the set of domain activities which are sched-

uled as a result of executing the alternative for control activity Cn
m.

7. Control activities are non-interruptible.

8. Execution of a control activity is a function which requires three inputs: the
first is the alternative of the control activity; the second is the set of goals to
be reasoned about along with the earliest start times and deadline of each goal;
the third input is the set of tasks which are currently in execution or are waiting
to be executed along with the utility that each of these tasks has accrued up to
that point in time as well the expected remaining time left to complete each of
these tasks.

EXECUTE CTASK(INPUT ) => OUTPUT

where

INPUT = Cn
m,

{∀Gik ∈ NGLIST (t) ∨ AGENDA(t), < Gik , EST (Gik), DL(Gik ) >},

{∀T
ak
ik

∈ ACTIV E(t), < T
ak
ik

, Uacc(T
ak
ik

, t), Dleft(T
ak
ik

, t) >}

Its output can be to schedule the goals, reschedule the tasks, delay reasoning
about the goal by adding it to agenda or drop the goal completely.
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OUTPUT =



























< OUTPUT1 >, schedule goal if Gik ∈ AGENDA(t)
< OUTPUT2 >, reschedule goal if G

ak
ik

∈ ACTIV E(t)

< DELAY (Gk) >, remove from NEWGOALLIST (t)
and add to AGENDA(t)
< DROP (Gk) >, remove goal from AGENDA(t)

OUTPUT2 = Remove Gik from AGENDA(t) ∧

Add < T
ak
ik

, ST (T ak
ik

), EFT (T ak
ik

) > to ACTIV E(t))

OUTPUT3 = Remove < T
ak
ik

, ST (T ak
ik

), EFT (T ak
ik

) >

from ACTIV E(t) ∧}

Add < T
a′

k
ik

, ST (T
a′

k
ik

), EFT (T
a′

k
ik

) > to ACTIV E(t)

9. If at time t, ACTIV E(t) = φ and GikεAGENDA(t) and EST (Gik) ≤ t, then

EXECUTE CTASK(Cn
m, {Gik , EST (Gik), DL(Gik)})

is executed.

A single agent scenario is a sequence of goals arriving at an agent with each
goal Gi

k arriving at a specific time AT (Gi
k), with an associated earliest start time

EST (Gi
k) and a deadline DL(Gi

k).
A multi-agent scenario is one that has multiple agents with each having its own

scenario. Goals can arrive from the external environment or can be transferred from
another agent in the multi-agent system.

An ensemble of scenarios is the set of multi-agent scenarios which are produced
from a set of goals which have a statistical distribution of their arrival times and
deadlines.

The optimization problem for a given agent in a multi-agent scenario is to
maximize the total utility obtained from completing the goals given a set of four
constraints. Each constraint is represented by ζi. Suppose there are N goals which
arrive at an agent over a time horizon Dhorizon.

max|
N

∑

k=1

Uacc(T
ak
ik

, Dused(T
ak
ik

, FT (T ak
ik

))) : ζ1 ∧ ζ2 ∧ ζ3 ∧ ζ4|

ζ1 ensures that the total duration taken to execute the domain activities and
control activities is less than the time horizon for the given scenario.

ζ1 = [
N

∑

k=1

Dused(T
ak
ik

, FT (T ak
ik

)) +
N

∑

k=1

Dused(C
n
m, FT (Cn

m)) ≤ Dhorizon]
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ζ2 ensures that a domain activity completes before the deadline for that goal and
that that deadline is within the scenario’s horizon.

ζ2 = [∀k, FT (T ak
ik

) ≤ DL(Gik) ≤ Dhorizon]

ζ3 ensures that domain activity does not begin execution before its earliest starting
time.

ζ3 = [∀k, ST (T ak
ik

) ≥ EST (T ak
ik

)]

ζ4 ensures that the control activity involved in scheduling completes before any
affected domain activities begin execution.

ζ4 = [∀k, T ak
ik

∈ SCHEDULED TASKS(Cn
m), FT (Cn

m) ≤ ST (T ak
ik

)]

Another way of viewing this problem is as follows:
The dynamic arrival of new goals Gi1, Gi2 ...Gik at the agent leads to the creation

of an execution sequence involving both domain and control activities that optimize
the given function under the constraints. Suppose

GsεSet of all possible orderings of Gi1 , Gi2...Gik

for a given ensemble of goal arrivals and Pr(Gs) is the likelihood that sequence Gs will
occur. Then the optimization can be defined in terms of finding the legal execution
sequence which optimizes the given function and the meta-level control policy P is the
policy for generating a nearly-optimal legal sequence of control activities interspersed
with domain activities which are the affectees of the control activities.

Meta-level control is the decision problem of choosing the set of control activi-
ties which solve the above optimization problem. This involves selecting the ordering
control activities from all such orderings possible in the environment which satisfy
the constraints.

Reinforcement Learning is the methodology used in this work to determine
the policy which optimizes the above function for an ensemble of scenarios. The state
representation for a naive reinforcement learning problem would require information
on each of the input variables in the above constraints for each instant in time.
This would lead to an extremely large and complex search space. This is infeasible
to learn and store. I introduce bounded rationality to this meta-level control
problem by approximating these variables in the state space so that approximately-
optimal policies are produced by the reinforcement learning process while the size of
the search space is bounded.

To elucidate the discussion further, consider the simple environment consisting
of 2 agents described in the dissertation. For the sake of simplicity, the agents are
named A and B. The discussion will specifically focus on agent A. Suppose T0 and T1

are the goals achieved by agent A. Each top-level goal is decomposed into executable
primitive actions. In order to achieve the goal, agent A can execute one or more of
its primitive actions within the goal deadline and the quality accrued for the goal
will be cumulative. Figure B.1 describes the alternative ways of achieving each of
these goals. Each alternative for goal Gk is called T ak

k and contains information on
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the sequence of primitive actions representing the alternative as well as the expected
utility EU(T ak

k ) and the expected duration ED(T ak
k ) of each alternative. Figure B.2

describes the alternative ways of achieving each control activity Cm. Each alternative
Cn

m contains name of alternative, a description of the alternative and the expected
duration ED(Cn

m) for each alternative.

Alternative Method Sequence Expected Utility Expected Duration

T 1
0 {M1} 6 8

T 2
0 {M2} 10.2 10.2

T 3
0 {M1,M2} 16.2 18.2

T 0
1 {M3} 12 8

T 1
1 {MetaNeg,NegMech1,M4} 12.6 16.2

T 2
1 {MetaNeg,NegMech2,M5} 13.05 16.6

T 3
1 {MetaNeg,NegMech1,M3,M4} 24.6 24.2

T 4
1 {MetaNeg,NegMech2,M3,M4} 25.05 24.6

Figure B.1. Alternative information for domain activities

Consider a scenario where the arrival model for agent A (denoted GoalName <

ArrivalT ime, Deadline >) is as follows:

1. G0 < AT = 1, DL = 40 >,

2. G1 < AT = 15, DL = 80 >,

3. G0 < AT = 34, DL = 90 >,

4. G1 < AT = 34, DL = 90 >.

The earliest start time for the goals in this scenario is the same as its arrival time.

Alternative Description Expected Duration

C0
m Add goal to agenda and delay reasoning 0

C1
m Call detailed scheduler 1

C2
m Call abstract scheduler 1

C3
m Schedule with no negotiation option 2

C4
m Schedule with NegMech1 3

C5
m Schedule with NegMech2 3

Figure B.2. Table of possible control activities

The following is the time line which describes agent A’s activities over a horizon
of 100 time units (D = 100).
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Time 1: Goal G01
arrives with EST (G01

) = 1 and DL(G01
) = 40).

Time 2: The meta-level controller is invoked and the control activity
EXECUTE CTASK(C1

1 , {< G01
, 1, 40 >}, φ) is prescribed as the best action.

Time 3: Control activity EXECUTE CTASK(C1
1 , {< G01

, 1, 40 >}, φ) begins ex-
ecution.

Time 7: Control activity completes execution and its output is
EXECUTE DTASK({< T 3

01
, 5, 25 >}). The domain activity

EXECUTE DTASK({< T 3
01

, 5, 25 >}) produces the legal schedule {M1,
M2} and begins execution by initiating execution of primitive action M1.

Time 13: Execution of the method M1 completes with quality of 6. Execution of
M2 which is next on the schedule begins.

Time 16: Goal G12
arrives with EST (G12

) = 15 and DL(G12
) = 80). Execution

of method M2 is interrupted and control switches from the execution com-
ponent to the meta-level control component. The meta-level controller is in-
voked and the control activity EXECUTE CTASK(C0

2 , {< G12
, 15, 80 >}, {<

T 3
01

, 6, 10 >}) is prescribed as the best action. Upon execution, the control ac-
tivity has < DELAY (G12

) > as its output. So the new goal is added to the
agenda and execution of method M2 is resumed.

Time 26: Method M2 completes with utility of 12 and goal G01
completes with finish

time FT (T 3
01

) = 26 and utility of Uacc(T
3
01

, 18) = 18. The agenda is checked and
goal < G12

, 15, 80 > is retrieved. The meta-controller is invoked and the control
activity EXECUTE CTASK(C5

3 , {< G12
, 15, 80 >}, φ) is prescribed as the

best action. The meta-level controller prefers alternative with NegMech2 in
it.

Time 27: Control activity EXECUTE CTASK(C5
3 , {< G12

, 15, 80 >}, φ) begins
execution.

Time 31: Control activity completes execution and its output is
EXECUTE DTASK({< T 4

12
, 29, 80 >}). The legal schedule is {MetaNeg,

NegMech2, M3, M4}. The domain activity begins execution by initiating
executing MetaNeg and M3 in parallel.

Time 33: Execution of MetaNeg completes. The information gathered by MetaNeg
is as follows: the other agent is executing schedule with expected utility of 9 and
the expected time of completion of that schedule is 80. There is also high slack
and high uncertainty in the non-local schedule. The meta-level controller does
not prescribe any change to the currently legal schedule. Method NegMech2
begins execution

Time 34: Goals G03
and G14

arrive with EST (G03
) = 34 , DL(G03

) = 90,
EST (G14

) = 34 and DL(G14
) = 90. Execution of method M3 and NegMech2
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is interrupted and control switches from the domain-level control component
to the meta-level control component. The meta-level controller prescribes the
following action: EXECUTE CTASK(C5

4 , {< G03
, 34, 90 >, < G14

, 34, 90 >

}, φ)

Time 36: Control activity EXECUTE CTASK(C5
4 , {< G03

, 34, 90 >, < G14
, 34, 90 >

}, {< T 4
12

, 1, 21 >}) begins execution.

Time 43: Control activity completes execution and its output is
EXECUTE DTASK({< T 3

03
, 38, 90 >, < T 4

12
, 29, 80 >}), DROP (G14

). The
legal schedule emitted is {NegMech2, M3, M4, M1, M2} The domain
activity begins execution by initiating execution of NegMech2 in parallel with
continuing execution of method M3.

Time 46: Method NegMech2 completes successfully with a commitment for method
M4 will be enabled at time 65. Control shifts to the meta-control component
which now decides whether to renegotiate by initiating
EXECUTE CTASK(C0

5 , φ, {< T 3
03

, 0, 20 >, < T 4
12

, 1, 16 >}). method M4 will
be enabled at time 65.

Time 52: Method M3 completes with utility 12.

Time 58: Execution of M4 completes with a successful commitment: method M4
will be enabled at time 65. Execution of M1 on the schedule begins.

Time 64: Execution of method M1 completes with a utility of 6. Execution of M2
begins.

Time 65: Method M4 is enabled by non-local agent. Execution of M2 is interrupted
and execution of M4 begins.

Time 77: Execution of method M4 completes with a utility of 12 and goal G12

completes with FT (T 3
12

) = 77 and utility of Uacc(T
3
12

, 34) = 25. Execution of
M2 is resumed.

Time 80: Execution of M2 completes. Execution of goal G03
completes with

FT (T 3
03

) = 88 and Uacc(T
3
03

, 18) = 18 completes. Utotal = 58. The agenda is
checked and φ is returned since agenda is empty.
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APPENDIX C

AGENT FRED’S EXECUTION-TIME BEHAVIOR

The following is a system trace for a particular execution scenario for Fred. The
trace describes the actual state of the agent along a time-line and the corresponding
meta-level decisions that are made by the agent.

State S1:
CurrentTime : 2
NewTaskList : AnalyzeRock < 1, 40 >; AgendaList : φ

ScheduleList: φ; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0; Total Utility
accrued : 0.0
MLC Decision : Call Detailed Scheduler

State S2:
CurrentTime : 3
NewTaskList : φ ; AgendaList : φ

ScheduleList: AnalyzeRock < 1, 40 >; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 0.0
MLC Decision : Parameters for Scheduler are EffortLevel=2; Slack=10%

State S3:
CurrentTime :5
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList : {GettoRockLocation, FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0; Utility of inter-
rupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 0.0
MLC Decision : Begin Execution of GettoRockLocation

State S4:
CurrentTime :13
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList : {FocusSpectrometeronRock}
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InformationGathered : φ

Utility of current schedule : 6.0; Duration of current schedule : 8.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 6.0
MLC Decision : Begin Execution of FocusSpectrometeronRock

State S5:
CurrentTime :16
NewTaskList : ExploreTerrain < 15, 80 >; AgendaList : φ

ScheduleList: φ; ExecutionList : {FocusSpectrometeronRockexe}
InformationGathered : φ

Utility of current schedule : 6.0; Duration of current schedule : 8.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 6.0
MLC Decision : Add New task to agenda

State S6:
CurrentTime :17
NewTaskList : φ; AgendaList : ExploreTerrain < 15, 80 >

ScheduleList: φ; ExecutionList : {FocusSpectrometeronRockexe}
InformationGathered : φ

Utility of current schedule : 6.0; Duration of current schedule : 8.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 6.0
MLC Decision : Resume execution of interrupted method FocusSpectrome-
teronRock

State S7:
CurrentTime :25
NewTaskList : φ; AgendaList : ExploreTerrain < 15, 80 >

ScheduleList: φ; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 18.0; Duration of current schedule : 18.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 18.0
MLC Decision : Evaluate task in agenda

State S8:
CurrentTime :26
NewTaskList : φ; AgendaList : ExploreTerrain < 15, 80 >

ScheduleList: φ; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 18.0
MLC Decision : Call detailed scheduler

State S9:
CurrentTime :28
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NewTaskList : φ; AgendaList : φ

ScheduleList: ExploreTerrain < 15, 80 >; ExecutionList : φ

InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 18.0
MLC Decision : Parameters for Scheduler are EffortLevel=2; Slack=30%

State S10:
CurrentTime :30
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{MetaNeg,NegMech2, ExamineTerrain,CollectSamples}
InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 18.0
MLC Decision : Begin execution of Information Gathering Action (MetaNeg)
in parallel with ExamineTerrain

State S11:
CurrentTime :33
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{NegMech2, ExamineTerrain,CollectSamples}
InformationGathered : < HIGH,LOW,HIGH

Utility of current schedule : 0.0; Duration of current schedule : 1.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 18.0
MLC Decision : Choose NegMech2 and continue

State S12:
CurrentTime :35
NewTaskList : AnalyzeRock < 34, 90 >,ExploreTerrain < 34, 90 >; AgendaList :
φ

ScheduleList: φ; ExecutionList :{NegMech2,
ExamineTerrainexe, CollectSamples}
InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 3.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 18.0
MLC Decision : Call detailed scheduler on all lists

State S13:
CurrentTime :37
NewTaskList : φ; AgendaList : φ

ScheduleList: AnalyzeRock < 34, 90 >,ExploreTerrain < 34, 90 >,ExploreTerrainexe <

15, 80 >; ExecutionList :φ
InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 3.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
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Total Utility accrued : 18.0
MLC Decision : Parameters for Scheduler are EffortLevel=2; Slack=30%

State S14:
CurrentTime :40
NewTaskList : φ; AgendaList : φ

ScheduleList: φ;
ExecutionList :{NegMech2, ExamineTerrainexe,

CollectSamples,GettoRockLocation, FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 3.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 2.0;
Total Utility accrued : 18.0
MLC Decision : Execute NegMech2 in parallel with method ExamineTerrain

State S15:
CurrentTime :46
NewTaskList : φ; AgendaList : φ

ScheduleList: φ;
ExecutionList :{ExamineTerrainexe, CollectSamples,

GettoRockLocation, FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 1.0; Duration of current schedule : 7.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 3.0;
Total Utility accrued : 19.0
MLC Decision : NegMech2 completes with a commitment that method Col-
lectSamples will be enabled at tume 65. Continue execution of Exam-
ineTerrain

State S16:
CurrentTime :52
NewTaskList : φ; AgendaList : φ

ScheduleList: φ;
ExecutionList :{CollectSamples,GettoRockLocation, FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 9.0; Duration of current schedule : 15.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 27.0
MLC Decision : Begin execution of GettoRockLocation

State S17:
CurrentTime :58
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{CollectSamples, FocusSpectrometeronRock}
InformationGathered : φ

Utility of current schedule : 15.0; Duration of current schedule : 21.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 33.0
MLC Decision : Begin execution of FocusSpectrometeronRock
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State S18:
CurrentTime :65
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{CollectSamples, FocusSpectrometeronRockexe}
InformationGathered : φ

Utility of current schedule : 21.0; Duration of current schedule : 27.0;
Utility of interrupted action : 6.0; Duration of interrupted action : 6.0;
Total Utility accrued : 39.0
MLC Decision : Interrupt FocusSpectrometeronRock and Begin execution
of CollectSamples

State S19
CurrentTime :77
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :{FocusSpectrometeronRockexe}
InformationGathered : φ

Utility of current schedule : 33.0; Duration of current schedule : 39.0;
Utility of interrupted action : 6.0; Duration of interrupted action : 6.0;
Total Utility accrued : 51.0
MLC Decision : Resume execution of FocusSpectrometeronRock

State S20
CurrentTime :80
NewTaskList : φ; AgendaList : φ

ScheduleList: φ; ExecutionList :φ
InformationGathered : φ

Utility of current schedule : 0.0; Duration of current schedule : 0.0;
Utility of interrupted action : 0.0; Duration of interrupted action : 0.0;
Total Utility accrued : 57.0
MLC Decision : Go to wait state
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