
Introspective Self-Explanation in Analytical
Agents

Anita Raja1 and Ashok Goel2

1 Department of Software and Information Systems, The University of North
Carolina at Charlotte, Charlotte, NC 28223, anraja@uncc.edu

2 AI Laboratory, School of Interactive Computing, Georgia Institute of Technology,
Atlanta, Georgia 30308, goel@cc.gatech.edu

Abstract. There is a critical and urgent need for automated analytical
agents operating in complex domains to provide meta-level explanations
of their reasoning and conclusions. In this paper, we identify the princi-
ples for designing analytical agents that can explain their reasoning and
justify their conclusions at different levels of abstractions to potential
human customers with varying goals. We also analyze the goals of users
of an automated agent for investigative analysis along the dimensions of
why, what, how and when, and develop a taxonomy of human goals that
will leverage the explanations generated by the agent.

1 Introduction

Automated agents are increasingly used to assist human decision-making in var-
ious domains ranging from engineering design to medical diagnosis to economic
prediction. In general, the principles of designing these automated agents are
based on factors like the quality of decision-making, the efficiency of computa-
tion, and the value of information. However, in many complex domains, there is
a critical and urgent need for explanations of the reasoning and conclusions of
the automated agents. Equipping automated agents with the ability to generate
meta-explanations of their behavior will enable them to be self-introspective of
their end-to-end problem solving process. In the domain of investigative analysis,
for example, an automated analytical agent must not only collect data from a
variety of data sources and generate hypotheses about a set of data, but it also
must explain its reasoning and conclusions to a range of potential human users.
This requirement of generating explanations imposes a new set of requirements
on the design of automated agents for investigative analysis.

In this paper, we describe an automated analytical agent and identify the
principles of designing it such that can explain their reasoning and justify their
conclusions to potential human customers. The desiderata for explanation gener-
ation [1] are that: (1) the explanation must be generated autonomously, without
any human intervention; (2) the contents of the explanation in general may in-
clude justification for the conclusions, explanations of the decision-making pro-
cess, and justification of the decision-making knowledge. The precise contents

of the explanation will depend on the human consumer and his/her goals. (3)
The level of abstraction of the explanation must be tunable to different goals of
various human consumers. Thus the focus of this work is on the capturing of and
providing access to explanations at multiple levels of abstraction. This requires
intelligent integration of many pieces of information as described in this paper.

The current state of automated agent design is such that these agents in
general do not know what they are doing, or why or how they are doing it.
Thus, the explanations and justifications are inherently limited and typically an
afterthought in the design of these systems. We propose that the generation of
meaningful explanations and justifications requires introspection by the agent
over its own reasoning and knowledge. The design requirement of introspection
in turn requires an explicit representation of the tasks the agent addresses, the
methods it uses to address them, and the knowledge used and created by the
methods.

Thus, the primary hypothesis of this paper is that self-explanations of the
decision-making process are enabled by introspection over a task structure (called
introspective task structure) containing meta-knowledge about the decision mak-
ing. Introspection pertains to the ability to inspect and capture the invocation of
tasks and methods in this task structure. We propose that introspection over the
task structure, which is a recursive decomposition at multiple levels of abstrac-
tion, enables generation of explanations at multiple levels of abstraction. Further,
since introspection is an autonomous process, it enables automated generation
of self-explanations.

The above hypothesis originates from earlier work on knowledge systems.
MYCIN [2] was an early production system for diagnosis in the domain of E.
Coli bacteria. When an explanatory interface called GUDION [3] was added
to MYCIN for training medical students, it was found that explanations of
MYCIN’s decision making in terms of chains of activated production rules were
at too low a level of abstraction for human consumption. NEOMYCIN was a
reimplementation of MYCIN in terms of the task structure of diagnostic decision-
making, and it provided explanations in terms of tasks rather than rules [4]. Since
NEOMYCIN there has been significant amount of new work on explanation in
intelligent systems. For example, Tanner et al. [5] used knowledge of task struc-
tures and domain models to generate explanations of different kinds. Sormo et.
al [6] and Cox [7] describe the role of explanation generation in model-based
and case-based reasoning systems. Murdock and Goel [8] used knowledge of task
structures and domain models to interleave explanations of decision making and
justifications of solutions. Languages for specifying task structures of complex
decision making include TAEMS [9] and TMKL [10].

The remainder of this paper is organized as follows: In Section 2, we de-
scribe a mixed-initiative analytical agent for investigative analysis capable of
self-introspection and providing different types of explanations for its actions. In
Section 3, we present our conclusions and future work.

2 An Automated Analysis Agent

Threat perception in intelligene analysis [11, 12] generally involves the tasks of
recognizing and characterizing a problem based on some initial evidence about
an event or activity; generating multiple explanatory hypotheses based on the
evidence; collecting and assimilating additional data; evaluating the multiple ex-
planatory hypotheses; and selecting the most plausible hypothesis. This analyti-
cal task is very complex because of the constantly evolving, and often unreliable
and conflicting nature, of the data. The evolving nature of data implies a need
for ongoing monitoring and continual generation and evaluation of hypotheses so
that new evidence can be accounted for as it arrives and the most likely explana-
tion can be produced at any given time. Further, the analytical task is hard not
only because of the need to assimilate new information that fits known patterns
but also because of the need to discover novel patterns. The need to discover
new patterns implies construction of explanations that can not only account for
the current data but also make predictions and generate expectations so that vi-
olation of an expectation can signal a novel situation. In this section we describe
the Analytical Agent (AA) capable of mixed-initiative reasoning that will assist
investigative analysts to choose from and reason about enormous databases of
text, imagery, video and web cast.

Fig. 1. Pirolli and Card’s Sensemaking and Foraging Loops

Pirolli and Card [13] describe a model they developed by observing the cogni-
tive task analysis performed by intelligence analysts as they did their jobs. They

have identified two main, overlapping loops in the analyst’s problem solving ap-
proach, a foraging loop and a sensemaking loop. Figure 1 describes this process.
The foraging loop involves finding the right data sources; searching and filtering
the information; and extracting the information. The sensemaking loop involves
iterative development of a conceptualization (hypothesis) from the schema that
best fits the evidence and the presentation of the knowledge product that results
from this conceptualization. We have designed AA for investigative analysis to
contain both the Sensemaking and Foraging loops as suggested by Pirolli and
Card. We describe STAB [14], the Sensemaking component in Section 2.1 and
TIBOR, the Foraging component in Section 2.2.

As mentioned earlier, explanation generation in an analytical agent must be
autonomous; should include justifications and explanations of the conclusions
and decision making process and knowledge; and be tunable to the different goals
of various human customers. In general, explanations can be of two types [15]:
(1) abductive explanations, and (2) self-explanations. An abductive hypothe-
sis provides a (best) explanation for a set of data. In investigative analysis, for
example, an abductive hypothesis may explain how a set of seemingly unre-
lated events form a pattern of activity. An agent’s self-explanation describes the
agent’s reasoning in reaching a conclusion. For example, in investigative anal-
ysis, an automated assistant may provide a description of its decision-making
process.

A self-explanation in general may have three components [1]: (1) justification
of conclusions; (2) explanation of the decision-making process; and (3) justifica-
tion of the decision-making knowledge. In investigative analysis, for example, a
conclusion about a specific pattern of activity may be justified by the evidence
for and against it, the decision-making process may be explained in terms of
the steps of the process, and the decision-making knowledge may be justified in
terms of past cases of investigative analysis.

The decision-making process can be explained in many ways, each with its
own benefits and drawbacks. Two commonly used methods are ”audit trails” [16]
and ”design rationales” [17,18]. In financial decision-making, the decision-making
may be explained by capturing ”an audit trail” of the process. This method has
the benefit of completeness but the disadvantage of a single and too low-level of
an abstraction. In long-term, large-scale team design, decision-making may be
explained in terms of issues, positions, and arguments underlying each decision.
This has the benefit of tunable levels of abstraction but the disadvantage that
it requires a human to capture the rationale for each decision.

Goal-Directed Explanations

Our first step towards designing introspective analytical agents is to analyze the
goals of human customers of an automated agent for investigative analysis along
the dimensions of why, what, how and when, and develop a taxonomy of human
goals for reading explanations generated by the agent. This analysis will be based
on interviews of investigative analysts. For each element in this taxonomy, we

Abstraction↓/Analyst→ A OA HASO OASO HADO

Conclusion(s) X X X X X

Confidence Values of Conclusions X X X X

Justifications for Conclusions X X X X X

Alternate hypotheses/justifications X X X X

Analyst’s Assumptions and Biases X X X X X

High-Level Explanation X X X X

Mid-Level Explanation X X X

Low-Level Explanation X X

Supporting Raw data X

Justifications for Domain Knowledge X

Table 1. Decision Process Explanation Matrix A: Analyst; OA: Other Analysts;
HASO: Higher Authority, Same Organization; OASO: Other Analysts, Same Orga-
nization; HADO: Higher Authority, Different Organizations

will identify the information that the explanation should contain, and develop
techniques for generating, aggregating and abstracting the required information.

Table 1 presents our preliminary classification of human customers (the
columns in the table) and contents of the explanation generated for the vari-
ous customers (rows). The human customers may range from the analyst using
our AA agent, to other agents in the same organization, to higher authorities in
the same organization, to analysts in different organizations, to high authorities
in different organizations. The contents of an explanation may range from the
conclusions reached by the AA agent, to confidence values for each of the con-
clusions, to justifications, i.e., the evidence for and against, for each of the con-
clusions, to alternative hypotheses considered by AA, to AA’s assumptions and
biases (which reflect the assumptions and biases of the analyst who engineers
its knowledge), to explanations of the decision-making process, to supporting
raw data for the conclusions, to justifications for the domain knowledge used
by decision-making process. Note that the decision-making process itself may
be articulated at multiple levels of aggregation and abstraction such as high,
medium or low.

Table 1 also presents our preliminary estimates of a explanation’s content
for different human customers. Thus, the human analyst using the AA agent
may want all the details, indicating by the marks in all the boxes in the corre-
sponding column. In general, however, as the explanation is shared with higher
decision-making authorities and outside the analyst’s organization, the explana-
tion’s content would be less detailed and more abstract.

Introspective Self-Explanations

The primary hypothesis of this paper is that self-explanations of the decision-
making process are enabled by introspection over the task structure which cap-
tures the decision making process, also called the introspective task structure.

So the next step towards building introspective agents is to construct these task
structures. The Sensemaking and Foraging components of the AA agent each
have an introspective task structure and we construct a third introspective task
structure for meta-AA, a component that reasons about and generates explana-
tions for AA’s overall problem solving process. In the discussion that follows, we
describe STAB, TIBOR and meta-AA; and their respective introspective task
structures,

2.1 The Sensemaking Component

Studies of investigative analysis [11] suggest that human analysts typically view
the task of threat perception as that of (1) generating abductive explanations for
a set of data, and (2) using the explanations to make verifiable predictions. These
studies also indicate that analysts use multiple kinds of knowledge including past
cases, prototypes and patterns. Psychological studies of intelligence analysts [12]
further indicate the three main errors made by human analysts in explanation
generation. Firstly, due to limitations of human memory, investigative analysts
often have difficulty keeping track of multiple explanations for a set of data
over a long period of time. Secondly, analysts often quickly decide on a single
explanation for the data set and stick to it as new data arrives. Thirdly, analysts
often look for data that supports the explanation on which they are fixated,
and not necessarily the data that may refute their explanation. The goal of the
sensemaking component is to help address these three limitations.

Fig. 2. Functional Architecture of Sensemaking Component

We view the task of threat perception as that of abducing a story whose plot
explains the current data and makes verifiable predictions about both the future
and the past. The story is composed out of multiple elementary hypotheses that
explain different portions of the data. The elementary hypotheses originate from
different kinds of knowledge of threats including cases, prototypes and patterns.
Figure 2 illustrates a high-level functional architecture for the sensemaking com-
ponent. The continual data foraging, analysis and abstraction loop (described in
the next subsection) is indicated at the bottom-left of the figure. In the sense-
making loop, abstractions of the current data in the present situation are used
to probe a library of past cases, prototypes and patterns of threats. The cases,
prototypes and patterns that match the current data in the present situation are
retrieved and invoked, thus generating multiple elementary hypotheses. The ele-
mentary hypotheses, which explain different portions of the data, are composed
into multiple stories that explain much of the current data.

The sensemaking and the data foraging components work together to (i)
generate, track and evaluate multiple elementary hypotheses; (ii) continually
construct stories to accommodate the constantly evolving data; (iii) make and
verify predictions about the future and the past; (iv) detect novel situations.
The violation of a prediction (a conflict or an anomaly) signals a novel situation.
Arguments for each story are generated by keeping track of the evidence in favor
and against the story. Confidence values for stories are based on (a) coverage of
the data; (b) evidence in favor of the story; (c) evidence against the story; and
(d) parsimony.

The stories generated for a set of data, along with the argument structures
and confidence values, are presented to the human analyst, who ultimately de-
cides whether to accept a story, and, if so, which one. The accepted story is
encapsulated as a new case and stored in the case memory. Thus, the case li-
brary is dynamic. The current version of the sensemaking component has been
instantiated in a computer system called STAB (for STory ABduction).

At present, STAB contains knowledge only of patterns of threats. It ana-
lyzes the VAST data set generated by the Pacific National Labs (PNNL). This
dataset pertains to normal and typical activities, as well as illegal and unethical
activities, in a fictitious town in the United States. It contains over a thousand
news stories, and a score of tables, maps and photographs. It is said to capture
many of the ambiguities and subtleties encountered in real investigative data.
The VAST dataset is input into STAB as a data stream containing predicates
representing objects, relations, and events in the chronological order in which
they are described in the news stories. Some of the apparently isolated events
in this data stream form patterns of illegal/unethical activities. STAB outputs
multiple abductive hypotheses that capture these illegal/unethical patterns of
activity and explain the causal and intentional relationships among events com-
prising an activity.

The generic patterns of illegal/unethical activities in STAB are represented
in a knowledge representation language called TMKL, which, for this task, has
the expressive power of Hierarchical Task Networks. Each pattern is organized in

task-method-subtask hierarchy, where more than one method may be applicable
to a task in the hierarchy.

Fig. 3. Activity Pattern for ”Rob a Store”

As events in the input data stream arrive incrementally, STAB matches the
events with the task nodes in the patterns. This matching is done using feature
vectors. Figure 3 and Figure 4 illustrate the activity pattern for Rob a Store
and Destroy Property. Suppose the first input events are Break(Window) and
Take(Money). The matching task nodes in the two patterns are shown in dotted
boxes. Note that BreakInto(Store) provides the intentional context for the event
Break(Window).

STAB invokes the patterns whose task nodes match the first input event
Break(Window) and considers them as candidate hypotheses for explaining the
data. In particular, it uses these explanatory hypotheses to generate expectations
about additional data not yet seen by STAB. Thus, the hypothesis of Rob a Store
generates the expectation of Take(Money) and Destroy Property generates the
expectation of Take(Null). As additional data in the form of event Take(Money)
arrives as input to STAB, the system matches the data with the expectations
generated by the candidate hypotheses. This may lead to abandonment of some
hypotheses. For example, in the current scenario, the event Take(Money) results
in the refutation of the Destroy Property hypothesis . The new data may also
lead to the acceptance of some candidate hypotheses with some confidence value.
Again in the current scenario, the event Take(Money) results in the acceptance
of the Rob a Store hypothesis with a confidence value that measures how many of
the task nodes in a task-method subtree of the hypothesis were matched by the
input data. The confidence value of a story plot depends in part on verification

Fig. 4. Activity Pattern for ”Destroy Property”

of expectations generated by it: the confidence value increases if the expectation
is met by evidence, and decreased if is not. The Rob a Store plot generates an
expectation of taking money and Destroy Property generates an expectation of
not taking money. In the current scenario, the expectation generated by the
Rob a Store is met and hence its confidence value is higher than that of Destroy
Property. In this way, STAB addresses all three main limitations mentioned in the
introduction of this section: limited memory, cognitive fixation, and confirmation
bias. STAB currently contains patterns of all illegal/unethical activities in the
VAST dataset.

While STAB generates explanatory hypotheses for the VAST dataset, it itself
does not know what it is doing, or why or how it is doing it. We envision a Meta-
STAB component that encodes the introspective task structure of STAB in the
TMKL knowledge-representation language. Figure 5 illustrates this encoding for
a small portion of STAB. The rectangles in the figure represent tasks; thus, the
highest level task is Generate Explanations. The rectangles expanded into ovals
represent methods used by STAB; thus the Pattern-Match Method addresses the
task of Generate Hypotheses. This Pattern-Match Method decomposes the Gen-
erate Hypotheses task into two simple subtasks: Feature Vector Matching and
Retrieval from Library. The transition machine for the Pattern-Match Method
depicted in the oval represents the control of processing of the sub tasks. In
general, the control of subtasks need not be linear; similarly, in general, mul-
tiple methods may be available for addressing a particular task. The Retrieve
from Library Task is directly encoded in STAB; a primitive, or directly encoded,
task may use both domain knowledge, K, and procedure, P. In this way, the
TMKL model of STAB in Meta-STAB explicitly captures the entire introspec-
tive task structure of STAB including the relationship between specific tasks
and the domain knowledge. TMKL is more expressive than the HTN (Hierar-
chical Task Networks) language because it provides constructs for capturing the

 Task

 Method

 Domain Knowledge

 Procedure

Generate Explanations

Generate Explanations Method

Generate Hypotheses

Generate Expectations

Pattern-Match Method

Feature Vector Matching Task

Retrieval from Library Task

 STAB Program Code

Fig. 5. Meta-STAB’s Introspective Task Structure

relationships not only between tasks and methods, but also between primitive
tasks and domain knowledge. When input data arrives, Meta-STAB executes
its introspective task structure, dynamically selecting and invoking tasks and
methods up to the level of primitive tasks. This selection and invocation of tasks
and methods depends on the knowledge conditions generated by the preceding
tasks. The primitive tasks in turn execute the corresponding code in STAB.
Meta-STAB keeps track of the trace of processing in the vocabulary of tasks
and methods. This scheme satisfies all three desiderata for explanation genera-
tion. STAB itself generates the explanatory hypotheses and the justifications for
them. Meta-STAB generates explanations of the decision-making process in the
task-method language. Since TMKL directly captures the relationship between
tasks and knowledge, Meta-STAB also justifies its decisions by relating them
to its domain knowledge. To the degree to which patterns are generalizations
of prototypes and prototypes are generalizations of cases, Meta-STAB can also
justify one of kind knowledge by pointing to the deeper kind. Further, since the
decision-making process can be explained to different levels of depth in the intro-
spective task structure of STAB, the level of abstraction of the explanations is
tunable to different goals of various human consumers. Finally, the explanations
and the justifications are generated autonomously.

2.2 The Foraging Component

The TIme BOunded Reasoning (TIBOR) component handles the foraging analy-
sis. TIBOR leverages an AI blackboard system [19] and resource-bounded control
mechanisms to support hypothesis tracking and validation in a highly uncertain
environment like the analysis domain. Blackboard-based architectures have been
previously used for complex information gathering and analysis tasks. Morrison
and Cohen [20] use a Bayesian blackboard called AIID to serve as a prototype
system for analysis and data fusion. BIG [21] is a resource-Bounded Information
Gathering agent that combines several sophisticated AI components. TIBOR
differs from these architectures in that it focuses on the end-to-end decision rea-
soning of analytical tasks and uses a sequential decision process approach to
reason about the inherent uncertainty of the domain. TIBOR is designed to be
a fully-functional mixed-initiative component and handles three types of deci-
sions: gathering of large scale, high dimensional data from a variety of sources,
which might be linked multimedia data as found on the web, broadcast video,
time-dependent transactional data, telecommunication data, or other types of
data; determining the type of processing to extract the data from these sources;
and determining appropriate interactive visualization of these data.

Fig. 6. Functional Architecture of Foraging Component

Figure 6 describes the architecture and control flow in TIBOR. The sense-
making component posts a set of hypotheses and concepts to the blackboard
(Step 1 in Figure 6) and this triggers the TIBOR component. The concepts are

searchable entities that represent a hypothesis. To support reasoning about time
and quality trade-offs, and thus a range of different resource/solution paths, TI-
BOR contains problem-solving models called Taems [9] task structures. Taems
task structures are abstractions of the low-level execution model and these struc-
tures are generated by the Task Structure Modeler sub-component. The Task
Structure Modeler takes the concepts as input (Step 2) and generates the cor-
responding Taems task structure (Step 3) that enumerates multiple different
ways (choices for databases, visualization tools and user interactions) to ob-
tain evidence to verify the set of concepts. These different choices are described
statistically in the task structure in two dimensions, duration and quality via
discrete probability distributions. We provide a detailed description of Taems
in the discussion that follows. The Taems task structure associated with the
concepts is then translated [22, 23] into a Markov Decision Process (MDP) [24]
in the control sub-component. The MDP Solver computes the optimal policy
for the MDP given the resource (deadline) constraints and uncertainty in the
environment and prescribes the best action (Step 4).

User interactions play an important role in the foraging analysis making this
a mixed-initiative system. The analyst must be given the ability to manually
direct a search or override actions suggested by the MDP control mechanism, in
order for this automated agent to be accepted by the analyst community. The
contingency plans built into the MDP policy will allow the control system to
adjust dynamically to such overrides. The automatic processing of the visualiza-
tion tools along with the user interactions will determine the confidence in the
concepts (Step 5). These evidential data as well their confidence values are then
posted on the blackboard. The blackboard will then propagate the confidence
values to verify the associated hypothesis. It is crucial for TIBOR to support both
opportunistic and planned verification of hypotheses and concepts. It is probable
that while gathering information to verify a concept supporting one hypothesis,
the belief for a competing hypothesis increases. The control sub-component will
model this possibility and then opportunistically redefine the problem solving
process to gather evidence to verify the competing hypothesis. Liu et al. [25]
provides a detailed discussion of role of the blackboard in hypothesis tracking
and the interactions with the visualization components.

At present we have completed implementation of the MDP-based control
sub-component. When TIBOR receives a hypothesis, the Task structure mod-
eler component generates a Taems structure. Figure 7 describes a simple ex-
ample Taems task structure for the hypothesis Rob A Store which has to be
validated. The top-level task, Verify Rob A Store is decomposed into two search-
able subtasks/concepts, Break Window and Take Money. In order for the Ver-
ify Rob A Store task to achieve quality, both Break Window and Take Money
should get non-zero qualities which are denoted by the q min quality attribu-
tion factor (qaf). Each concept X has two subtasks, the first subtask Visual-
ize X Concept will determine which database and visualization tool to use; and
the UI X Concept subtask will determine the quality obtained towards verifying
the concept as a result of user interaction.

Fig. 7. Taems Task Structure for Verify Rob A Store Task

All primitive actions in TAEMS, called methods, are statistically character-
ized in two dimensions: quality and duration. Quality is a deliberately abstract
domain-independent concept that describes the contribution of a particular ac-
tion to overall problem solving. Thus, different applications have different notions
of what corresponds to quality. A quality distribution Q 30 0.8 20 0.2 implies
that the action will obtain a quality of 30, 80% of the time and a quality of
20, 20% of the time. LQ Vis Break Window and HQ Vis Break Window are the
two alternative ways of visualizing the Break Window concept, the former will
open up the images quickly in low quality mode using a low pixel rate; the lat-
ter will take a longer time to load the images but will have higher precision of
the images. The enables non-local relationship means the target method or task
cannot accrue quality until the enabling task or method has non-zero quality. In
other words, Visualize Break Window Concept has to accrue non-zero quality
for user interaction to be successful. In other words, the images in the database
have to be successfully rendered by the visualization tool for the user to have
useful interactions with the data. As described earlier, the Taems task structure
is translated into a MDP and the MDP policy prescribes the action choices.

Like Meta-STAB, we envision a Meta-TIBOR component that encodes the
introspective task structure of TIBOR in the TAEMS language. This Meta-
TIBOR introspective task structure will capture the various alternative ways
for information foraging and visualization along with their quality and duration
tradeoffs. Similarly we capture the end-to-end reasoning process of the AA agent
using a Meta-AA component and describe its introspective task structure in
TAEMS. Figure 8 and Figure 9 describe the introspective task structures of
the Meta-TIBOR and Meta-AA components respectively. The introspective task
structures described in TAEMS will allow the agent to autonomously justify the
trade-offs that determine the action choices.

Fig. 8. Meta-TIBOR’s Introspective Task Structure

Note that the explanations are both causal and intentional. The explanations
are causal because the execution of a task in the introspective task structure sets
up the knowledge conditions for the selection, invocation and execution of the
succeeding task. Thus, the execution of various tasks is linked by the knowledge
states they take as inputs and give as outputs. The explanations are intentional
because the execution of a task (except the dummy task at the root of the
task structure) takes place in the context of some higher-level task. Thus, this
scheme can help answer not only the question of what the agent is doing at any
given state of processing (the task), but also how (the method), and why (the
higher-level task).

3 Conclusions and Future Work

In this paper we argue that agents operating in complex domains like inves-
tigative analysis should be capable of self-introspection over the task structure
of their decision making process. This type of self-introspection enables agents
to generate meaningful explanations and justifications of their action choices.
We describe the components of an analytical agent and discuss how to include
introspection and self-explanation as first-class design goals. We plan to con-
tinue implementation of the agent and study the effectiveness of the explanation
matrix and meta-reasoning task structures at multiple levels of abstraction.

Fig. 9. Meta-AA’s Introspective Task Structure

4 Acknowledgments

This work was sponsored by the National Visualization and Analytics Center
(NVAC) under the auspices of the Southeastern Regional Visualization and An-
alytics Center. NVAC is a U.S. Department of Homeland Security Program led
by Pacific Northwest National Laboratory.

References

1. Chandrasekaran, B., Swartout, W.: Explanations in Knowledge Systems: The Role
of Explicit Representation of Design Knowledge. IEEE Expert 6(3) (June 1991)
47–49

2. Buchanan, B., Shortliffe, E.: Rule-based expert systems : the MYCIN experiments
of the Stanford Heuristic Programming Project. Addison-Wesley, Reading, MA
(1984)

3. Clancey, W.J., Letsinger, R.: NEOMYCIN: Reconfiguring a rule-based expert
system for application to teaching. In: Proceedings of the Seventh International
Joint Conference on Artificial Intelligence. (August 1981) 829–836

4. Clancey, W.J.: The Epistemology of a Rule-Based Expert System - A Framework
for Explanation. Artificial Intelligence Journal 20(3) (1983) 215–251

5. Tanner, M.C., Keuneke, A.M., Chandrasekaran, B.: Explanation using task struc-
ture and domain functional models. (1993) 586–613

6. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning –
Perspectives and Goals. Artificial Intelligence Review 24(2) (October 2005) 109–
143

7. Cox, M.T.: Metacognition in computation: a selected research review. Artificial
Intelligence 169(2) (2005) 104–141

8. Goel, A.K., Murdock, J.W.: Meta-cases: Explaining case-based reasoning. In:
EWCBR. (1996) 150–163

9. Decker., K.: Taems: A framework for analysis and design of coordination mech-
anisms. In: In G. O’Hare and N. Jennings, editors, Foundations of Distributed
Artificial Intelligence. Wiley Inter-Science. (1995)

10. Murdock, J., Goel, A.: Meta-case-Based Reasoning: Using Functional Models to
Adapt Case-Based Agents. In: Proceedings of the International Conference on
Case-Based Reasoning. (August, 2001) 407–421

11. Krizan, L.: Intelligence Essentials for Everyone. Daine Publications Company
(1999)

12. Heuer, R.: Psychology of Intelligence Analysis. Center for the Study of Intelligence
(1999)

13. Pirolli, P., Card, S.: The Sensemaking Process and Leverage Points for Analyst
Technology as Identified Through Cognitive Task Analysis. In: Proceedings of 2005
International Conference on Intelligence Analysis. (May 2005) 2–4

14. Adams, S., Goel, A.: Making Sense of VAST Data. In: To appear in Proc. IEEE
Conference on Intelligence and Security Informatics. (May 2007)

15. Josephson, J.R., Josephson, S.G.: Abductive Inference: Computation, Philosophy,
Technology. Cambridge Univerity Press, Cambridge, MA (1994)

16. Bishop, M.: A Standard Audit Log Format. In: Proceedings of the 1995 National
Information Systems Security Conference. (October 1995) 136–145

17. Josephson, J.R., Josephson, S.G.: Abductive Inference: Computation, Philosophy,
Technology. Cambridge Univerity Press, Cambridge, MA (1994)

18. Buckingham Shum, S. In: Design Argumentation as Design Rationale. New York:
Marcel Dekker, Inc. (1996)

19. Engelmore, R., A. Morgan, e.: Blackboard Systems. Addison-Wesley (1988)
20. Morrison, C.T., Cohen, P.R.: The hats simulator and colab: An integrated infor-

mation fusion challenge problem and collaborative analysis environment. In: ISI.
(2006) 105–116

21. Lesser, V., Horling, B., Klassner, F., Raja, A., Wagner, T., Zhang, S.: BIG: An
Agent for Resource-Bounded Information Gathering and Decision Making. Arti-
ficial Intelligence Journal, Special Issue on Internet Information Agents 118(1-2)
(May 2000) 197–244

22. Raja, A., Lesser, V., Wagner, T.: Toward Robust Agent Control in Open Envi-
ronments. In: Proceedings of the Fourth International Conference on Autonomous
Agents, Barcelona, Catalonia, Spain, ACM Press (July, 2000) 84–91

23. Raja, A., Lesser, V.: A Framework for Meta-level Control in Multi-Agent Systems.
To appear in Autonomous Agents and Multi-Agent Systems (January 2007)

24. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific,
Belmont, MA (1996)

25. Liu, D., Vaidyanath, J., Raja, A.: Tibor: A resource-bounded information foraging
agent for visual analytics. UNCC Charlotte Visualization Center Technical Report
CVC-UNCC-07-04, University of North Carolina at Charlotte (2007)

