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Abstract 
 

   Visual Analytics is the science of applying reasoning and 
analysis techniques to large, complex real-world data for 
problem solving using visualizations. Real world 
knowledge gathering and investigative tasks are very 
complex because the problem-solving context is constantly 
evolving, and the data may be incomplete, unreliable 
and/or conflicting. We describe a mixed-initiative 
reasoning agent that will assist investigative analysts to 
choose from and reason about enormous databases of text, 
imagery, video and webcast. This agent leverages 
sequential decision making and an AI blackboard system to 
support hypothesis tracking and validation in a highly 
uncertain environment. Resource-bounded control 
mechanisms enable the agent to reason about the 
uncertainty.  We have also designed a user interface that 
will enable analysts to gather and sift large amounts of 
evidence and to collaborate with and, where necessary, to 
control the agent.  
 
1. Introduction 
 
    An analyst's problem solving task is complex because 
the problem context and data are constantly changing. 
Moreover, the data can be incomplete, unreliable and/or 
conflicting. This type of problem solving requires 
reasoning about uncertainty, generation and validation of 
multiple hypotheses. The incompleteness, unreliability and 
conflicting nature of the data imply a need for deciding 
which data sources to query, and what types of analysis to 
use for collecting, assimilating and abstracting the data into 
evidence.  Moreover the analysis tasks are usually time 
critical and they have to use approaches ranging from 
quick and dirty methods to detailed, high quality 
investigations depending on characteristics the task. 
A model of cognitive task analysis performed by analysts 
has been developed by Pirolli and Card [9]. They have 
identified two main, overlapping loops in the analyst’s 
problem solving approach, a foraging loop and a 
sensemaking loop. Figure 1 describes this process. The 
foraging loop involves accessing external data sources; 

searching and filtering the data; reading and extracting 
information and creating the evidence file to (in)validate 
hypothesis.  The sensemaking loop involves iterative 
generation of hypothesis; presentation of the intermediate 
and complete hypothesis; and requesting the foraging loop 
for evidence to support the hypothesis.  

  
 

 
 
 
 

This paper gives an overview of an agent designed to 
handle the information foraging process,  The agent uses 
an intelligent user interface to assist the analyst in his/her 
decision making process. Analysis tasks involve 
identifying and tracking multiple hypotheses by the 
sensemaking loop. The foraging agent supports the 
sensemaking loop, by gathering evidence to validate the 
correct hypotheses and elimination of incorrect hypotheses 
while solving a query pertaining to Visual Analytics. It 
uses interactive visualizations [7, 12] to enable analysts to 
gather and sift large amounts of evidence in a time-
bounded fashion and to collaborate with and, where  



  
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
necessary, to control the analysis domain which is 
inherently dynamic and uncertain.  The contributions of 
our work are (1) a mixed-initiative agent architecture to 
assist analysts in their foraging tasks (2) using sequential 
decision making and an AI blackboard approach for 
gathering evidence to (in)validate hypotheses; and (3) 
supporting interactive visualization and exploration at 
every step of the problem solving process. 

The rest of this paper is organized as follows. We first 
describe the blackboard-based information foraging agent 
and the resource-bounded reasoning techniques used by the 
agent. We then describe the current status of the system 
and present empirical results comparing the sequential 
decision making approach to a deterministic approach. 
Finally we summarize related work and present our future 
work and conclusions. 
 
2. A Time-Bounded Information Foraging 
Agent 
 

We have designed TIBOR, a TIme BOunded Reasoning 
agent to handle the complex information foraging process 
required in analysis domains. TIBOR leverages an AI 
blackboard system [3, 4, 8] and resource- bounded control 
mechanisms to support hypothesis tracking and validation 
in a highly uncertain environment like the analysis domain. 
Figure 2 describes the TIBOR’s agent architecture and 
control flow. TIBOR handles three types of decisions: 
gathering of large scale, high dimensional data from a  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
variety of sources, which might be linked multimedia data 
as found on the web, broadcast video, time-dependent 
transactional data, telecommunication data, or other types 
of data; determining the type of processing to extract the 
data from these sources; and determining appropriate 
interactive visualization of these data. The following is a 
description of TIBOR’s decision making process and 
control flow. The sensemaking component [1] posts a set 
of hypotheses and concepts to TIBOR’s blackboard (Step 1 
in Figure 2) and this triggers the TIBOR agent. The 
concepts are searchable entities that represent a hypothesis. 
To support reasoning about time and quality trade-offs, and 
thus a range of different resource/solution paths, TIBOR 
contains problem-solving models called Taems [5] task 
structures. Taems task structures are abstractions of the 
low-level execution model and capture uncertainty in 
outcome distributions. They are generated by the Task 
Structure Modeler sub-component. The Task Structure 
Modeler takes the concepts as input (Step 2) and generates 
the corresponding Taems task structure (Step 3) that 
enumerates multiple different ways (choices for databases, 
visualization tools and user interactions) to obtain evidence 
to verify the set of concepts. These different choices are 
described statistically in the task structure in two 
dimensions, duration and quality via discrete probability 
distributions. We provide a detailed description of Taems 
in the following section. The Taems task structure 
associated with the concepts is then translated [10, 11] into 
a Markov Decision Process (MDP) [2] which is also 
described in detail in the discussion that follows. The 

Figure 2: Functional Architecture of   Foraging Component 



Markov Decision Process Solver computes the optimal 
policy for the MDP given the resource (deadline) 
constraints and prescribes the best action (Step 4).  
  User interactions play an important role in the foraging 
analysis making this a mixed-initiative agent. TIBOR is 
equipped with a user interface that will support the mixed-
initiative problem solving process. The analyst must be 
given the ability to manually direct a search or override 
actions suggested by the control mechanism, in order for 
this automated agent to be accepted by the analyst 
community. The contingency plans built into the MDP 
policy will allow the control system to adjust dynamically 
to such overrides. The automatic processing of the 
visualization tools along with the user interactions will 
determine the confidence in the concepts (Step 5). These 
evidential data as well their confidence values are then 
posted on the blackboard. The blackboard will then 
propagate the confidence values to verify the associated 
hypothesis.   It is crucial for TIBOR to support both 
opportunistic and planned verification of hypotheses and 
concepts. It is probable that while gathering information to 
verify a concept supporting one hypothesis, the belief for a 
competing hypothesis increases. TIBOR’s control 
component will model this possibility and then 
opportunistically redefine the problem solving process to 
gather evidence to verify the competing hypothesis. 
    The heart of TIBOR agent is the AI blackboard system 
[4] that has three main components: the Blackboard; 
Knowledge Sources (KSs); and the Control Component. 
The blackboard functions as a multileveled database for the 
information that has been discovered and produced thus 
far. This information includes raw data, partial solutions 
and various problem solving states. The levels in TIBOR’s 
blackboard are Goal, Hypothesis, Concept and Data, in 
order of decreasing granularity. The Goal level stores the 
resolution information. The Hypothesis level has one or 
more hypotheses. Each hypothesis contains concepts which 
are represented in the Concept level. The Data level 
contains the data/evidences gathered to (in)validate the 
various hypothesis. The layered hierarchy allows for 
explicit modeling of concurrent top-down and bottom-up 
processing, while maintaining a clear evidential path for 
supporting and contradictory information. The information 
at a given level is thus derived from the level(s) below it, 
and it in turn supports the hypothesis at higher levels. For 
example, when evaluating the validity of a particular 
hypothesis, the system would examine the reliability of the 
visualizations used to generate the properties of the object 
upon which the validation will be made, each of which are 
in turn different types of visual or text data. 

The KSs are independent computational modules that 
together contain the expertise needed to solve the problem. 
They vary in their internal representation and 
computational methods and do not interact directly with 
each other. In TIBOR agent, the KSs include databases of 
images, video, text and electronic transactions; the 

visualization tools used to interact with these databases; 
and the sensemaking component will serve as KSs. Some 
examples are ImageDBKS, VideoDBKS, IntelReportsKS, 
SemanticImageBrowserKS, TextKS, and SenseMakingKS 
etc. A blackboard directs the problem-solving process by 
allowing KSs to respond opportunistically to changes on 
the blackboard and chooses the most appropriate KS 
activation to execute based on the state of the blackboard 
and the set of triggered KSs [4]. The control component 
makes runtime decisions about the problem solving 
process, specifically for a given hypothesis and resource 
(time) constraints, it will determine the databases and tools 
that need to be accessed. We have modeled this control 
process as a Markov decision process-based [2] sequential 
decision problem. The essence of sequential decision 
problems is that decisions that are made in resource-
bounded, uncertain environments can have both immediate 
and long term effects; the best action choice depends on 
the types of future situations.  
 
3. Taems-based Uncertainty Reasoning 
 
   As described earlier, TIBOR receives concepts from the 
sensemaking component and generates the corresponding 
Taems task structure [5]. For the analysis domain, the 
Taems task structure contains the various choices of 
databases, visualization tools and levels of user interaction 
relevant to the particular query/hypothesis. The Taems 
language models problem solving patterns. We can model 
the fact that one of several actions may be performed and 
also that a given method may have several possible 
outcomes, or that an agent has the option to perform a 
facilitating task before the actual one. A quantitative 
representation of the agent's choices using Taems allows 
the agent to select that which is most appropriate in the 
given context [6]. 
 
 

 
Figure 3: Taems Task Structure for Rob_A_Store 
Task 

    Figure 3 describes a simple example Taems task 
structure that involves finding the evidence for the 



hypothesis Rob_A_Store. The top-level task is 
decomposed into two subtasks, Break_Window and 
Take_Money. Since TIBOR is a mixed-initiative system, 
user interaction plays an important part in the problem 
solving process. Rob_A_Store is modeled in the task 
structure by the q_sum quality attribution factor (qaf). The 
q_sum qaf implies that the quality for the Rob_A_Store 
task is the sum of the qualities of its Break_Window 
subtask and Take_Money subtask. The task Break_Window 
has two subtasks, the first subtask 
Visualize_Break_Window will determine the mode for the 
semantic image browser tool [12]; and the other subtask 
UI_for_Break_Window will determine the data interaction 
quality by the user. The qaf associated with the 
Break_Window subtask is also a q_sum meaning its quality 
is the sum  of the Visualize_Break_Window Concept 
subtask and  the UI_for_Break_Window Concept subtask.. 
Visualize_Break_Window and UI_for_Break_Window   
have two subtasks respectively. A q_exactly_one qaf is 
functionally equivalent to an XOR operator. The quality of 
the Visualize_Break_Window Concept is the quality of any 
of its subtasks, provided that only one subtask has quality. 
    Primitive actions in Taems, called methods, are 
characterized statistically in two dimensions: quality and 
duration. Quality is a deliberately abstract domain-
independent concept that describes the contribution of a 
particular action to overall problem solving.  Thus, 
different applications have different notions of what 
corresponds to quality. We plan to obtain the quality and 
duration distributions for the tools and user interaction 
tasks from statistical studies of tools use and analyst user 
interaction. A quality distribution Q (38 0.8 20 0.2) implies 
that the action will obtain a quality of 38, 80% of the time 
and a quality of 20, 20% of the time. 
LQ_Vis_Break_Window and HQ_Vis_Break_Window in 
Figure 3 are the two alternative ways of visualizing the 
data related to the Visualize_Break_Window Concept. The 
former will open up the images quickly in low quality 
mode using a low pixel rate; the latter will take a longer 
time to load the images but will have higher precision of 
the images and obtain greater quality. The enables non-
local relationship from the Visualize_Break_Window 
Concept to the methods LQ_UI_Break_Window and 
HQ_UI_Break_Window implies that the 
Visualize_Break_Window Concept has to accrue non-zero 
quality for the primitive actions related to user interaction 
to be successful. In other words, the images in the database 
have to be successfully rendered by the visualization tool 
for the user to have useful interactions with the data. 

In order to determine the optimal action choices, the 
Taems task structure is translated into a Markov Decision 
Process by initializing a state set and identifying the 
possible actions and expanding each possible outcome 
which are characterized by discrete quality, cost and 
duration values.  
 

4. Markov Decision Process 
 
     A Markov Decision Process (MDP) [2] is a 
probabilistic model for decision making and planning. It 
uses dynamic programming to decide on the optimal policy 
that yields the highest expected utility. MDPs   capture the 
essence of sequential processes and are used to compute 
policies that identify, track, and plan to resolve confidence 
values associated with blackboard objects, which in this 
application correspond to evidence and hypotheses about 
the evidence.   
    A Markov Decision Process has four components: a set 
of actions (A), a set of states (S), a probability function (P), 
and a reward function (R). Pa(ss') is a probability function 
denoted as the probability of transitioning from state s to s' 
via executing action a, while Ra(S) is a reward function 
defined by the reward received for taking action a. The 
solution to a MDP is a policy π which is a mapping from 
states to actions. The value function Vπ(s) is the expected 
cumulative reward of executing policy π starting in state s. 
It can be expressed as 
           Vπ(s) = E [rt+1 + rt+2 …| st = s, π] 
Where rt is the reward received at time t, st is the state at 
time t. 
    An optimal policy is one that maximizes the expected 
value of the policy. The optimal value function, written as 
V*, is associated with a specialized form of the Bellman 
equations: 
            V*(s) = max ∑s' P(s' | s, a) [R(s' | s, a) + V* (s')] 
   The MDP solver receives a task structure along with an 
associated deadline from the Taems task structure modeler 
sends the task structure it generates to the MDP solver.   
This deadline to validate the hypothesis can be specified by 
either the user or the sensemaking component. Suppose the 
deadline is provided as an input to the system and a policy  
 

 
 

 
Figure 4: A partial view of the Markov Decision 
Process describing states, actions and transition 
probabilities for the Rob_A_Store task 
 
is computed as described in section 2. Figure 4 shows the 
policy computed for a deadline of 85 time units. 



The policy obtained from the MDP assists the analysts 
in looking at the trade-offs between the greedy choice of 
actions and the optimal choice of actions in dynamic and 
uncertain domains. 
 
5. TIBOR In Execution 
 
    Our current implementation of TIBOR leverages the 
Taems representation and the MDP-based sequential 
decision making process. It also supports the semantic 
image browser [12] and allows for user interaction. We 
plan to integrate the more complicated reasoning of 
blackboard into the agent in the near future. The following 
is a description of the implemented system along with 
screen shots when executing the Rob_A_Store task with a 
deadline of 85 time units. 

TIBOR has a control panel, shown in the left window of 
Figure 5 that allows the user to interact with the agent by 
specifying his/her choices and also to track the progress of 
the problem solving process.  It can be thought of as a 
dashboard having all the controls to manage the user’s 
decision-making process. The control panel provides two 
types of views, the current view provides the decisions 
made by system on sources, analysis tools and 
visualization tools as well as interaction decisions on 
interactions made by the user and the future view provides 
the analyst choices about data sources, analysis tools, 
visualization tools and hypothesis. The control panel also 
has a time slot that keeps the user informed about the time 
used. The Executed Methods window lists all the actions 
that have been executed so far.  
 

 
 
 
 
 
 
 
The system is designed to run in two modes, minimized 

(precognitive) mode and the maximized mode. The 
minimized mode is as shown in Figure 5. The maximized 

mode will display the entire Taems structure under 
consideration and the corresponding MDP. The View Task 
Structure button displays the TAEMS task structure as a 
snapshot of the current state of problem solving. The View 
Markov Process button will enable the users to view the 
decision process as well as the optimal policy. The control 
panel also provides the user with the accumulated quality 
to show the quality accrued after each action completes 
execution. When an action is chosen the control panel 
triggers the associated visualization tool (the semantic 
image browser) as shown in the right window of Figure 5.  
The agent continues its execution providing 
recommendations for user interaction along the way. The 
left window of Figure 5 is the screen shot of the control 
panel. It provides a list of actions executed, the 
corresponding quality and duration values, the 
accumulated quality for the top-level task and used 
problem solving time.  
 
 
 
 
 
 
 

DL AQDS SDDS AQPOL SDPOL t-test 
10 0 0 20 2.11 2.4837E-10 
28 33.2 6.20 47.6 5.06 0.00095931 
32 34.4 5.80 60.6 4.62 2.52176E-09 
46 58.8 3.80 88.6 8.28 4.13636E-06 
68 85.6 5.06 103.6 5.06 5.5741E-05 
85 107.6 5.06 107.6 5.06 1 

 
6. Empirical Results 
 

In this section, we describe our efforts to evaluate the 
MDP-based decision making mechanism for task structures 
representing different deadlines. As described earlier, the 
MDP approach produces a policy that will dynamically 
adjust the problem solving process to the deadline and 
runtime execution characteristics. We also define a 
deterministic process scheduler that builds a static schedule 
with the highest possible quality for the deadline. An 
example of deterministic schedule (DS) in Figure 3 is:  

{HQ_Vis_Break_Window, HQ_UI_Break_Window,     
HQ_Vis_Take_Money, HQ_UI_Take_Money}. These task 
structures are variations of structure in Figure 3. 

Due to the uncertainty in method execution as described 
in section 3, there is uncertainty in the quality and duration 
distributions of the deterministic schedule (DS). For 
example, although not shown in the Figure 3, the quality 
distribution for method HQ_UI_Take_Money is (20 0.6 10 
0.4) and duration distribution for this method is (26 0.4 36 
0.6). So the quality distribution for DS of the task structure 
in Figure 3 is (108 48% 98 32% 90 12% 80 8%) and the 

Figure 5: Screenshot of TIBOR in the midst of 
executing HQ_UI_Take_Money method: the 
control panel is on the left and the semantic 
image browser on the right 

Table 1: Comparison of Quality of 
Deterministic Schedule (DS) and the policy 
(POL) computed for the corresponding Markov 
Decision Process. DL is deadline; AQ is 
average quality and SD is the standard 
deviation



duration distribution is (82 20% 92 30% 84 20% 94 30%) 
which captures the uncertainty in the schedule execution. 

The experiment was designed to compare the quality and 
duration of the MDP policy for task structure representing 
different deadlines to that produced by the deterministic 
plan.  We generated six example task structures based on 
the structures in Figure 3 with deadlines of 10, 28, 32, 46, 
68 and 85 respectively. We also varied the quality and 
duration distributions of the leaf nodes for each example.    

Given the duration distributions of the task structures, 
deadlines in the 60-100 range are considered loose 
deadlines, 20-60 time units are considered medium 
tightness deadlines and 0-20 time units are categorized as a 
tight deadline. We used the MDP-based controller to 
generate policies and ran ten simulations for each task 
structure and recorded the quality obtained at the top-level 
task as well as the total execution time for each run. Then 
the deterministic schedule was executed ten times and we 
recorded the average quality obtained for each deadline as 
well as the average execution time. 

The results of the experiments comparing quality are 
shown in Table 1. Each row in the table represents a 
specific deadline. AQDS and SDDS are the quality and 
standard deviation obtained by averaging results from ten 
real-time simulation runs of the deterministic schedule 
computed for each of the six task structures. AQPOL and  
SDPOL are the quality and standard deviation obtained by 
averaging results from ten real-time simulation runs of the 
MDP computed for each of the six task structures. Column 
four represents a two-tailed t-test for qualities by ten times 
executions of MDP method and deterministic plan. Row 
one represents the task structure with a tight deadline. For 
the first five rows, the t-test value is less than 0.05. Hence 
for these deadlines, performance of MDP schedule is 
statistically significantly different from the performance of 
the deterministic plan. For row six, the t-test value is 1. 
Hence there is no significant difference for deadline 85. 
Because the deadline 85 is so loose that deterministic plan 
can complete all methods to obtain same high quality with 
MDP method. 

The results comparing execution-time schedule 
durations are shown in Figure 6. All data points except one 
(when the deadline is 85) show the MDP method uses the 
total allowed time more effectively than the deterministic 
schedule. It means MDP method can take advantage of 
time to obtain maximum quality without exceeding 
deadline.  

We now will describe some sample execution runs to 
elucidate this discussion. Suppose the deadline is 10 time 
units, the deterministic schedule does not execute because 
the duration of the very first method/action 
HQ_Vis_Break_Window is greater than 10 time units (c.f. 
Figure 3). Suppose the deadline is 46, the deterministic 
schedule executes HQ_Vis_Break_Window and 
HQ_UI_Break_Window. The MDP method adapts its policy 
and uses the allowed time more effectively to execute 

actions: HQ_Vis_Break_Window, LQ_UI_Break_Window, 
LQ_Vis_Take_Money, and LQ_UI_Take_Money. So for 
deadline 46, the MDP method produces greater quality 
than the deterministic method. Suppose the deadline is 85,  

 

 
 
 
 

this deadline is so loose that both the MDP and 
deterministic approach execute the following schedule 
{HQ_Vis_Break_Window, HQ_UI_Break_Window, 
HQ_Vis_Take_Money, HQ_UI_Take_Money} and produce 
same quality. Thus both Table 1 and Figure 6 show that the 
MDP policy performs better than the deterministic method 
as it is able to adapt to the uncertainty and dynamism of the 
runtime environment. 
 
7. Discussion 
 

We have described TIBOR, a mixed-initiative agent 
capable of assisting humans in complex analysis tasks 
using visualizations and an intelligent user interface. We 
have identified   abstract representations of these tasks to 
assist in the automated analysis as well as integrated the 
agent with an image database and the semantic image 
browser visualization tool. We have also implemented an 
MDP-based resource-bounded control mechanism that will 
reason about uncertainty in the environment as well as in 
the complex real-world data.  

The sensemaking KS [1, 9] will be invoked to perform 
identification of novel situation story understanding and 
plan recognition. Additionally, in novel situations, the 
sensemaking KS should be equipped to handle situation 
construction, new hypothesis generation, and plan 
adaptation. TIBOR’s foraging capabilities, on the other 
hand, include identifying interesting data to initiate the 
problem solving process as well as efficiently gather 
evidence to support/refute hypothesis generated by the 
sensemaking KS.  

Blackboard-based architectures have been previously 
used for complex information gathering and analysis tasks. 
 Morrison and Cohen [3] use a Bayesian blackboard called 

Figure 6:  Comparison of Duration  



AIID to serve as a prototype system for analysis and data 
fusion. BIG (Lesser, V. et al., 2000) is a resource-Bounded 
Information Gathering agent that combines several 
sophisticated AI components. BIG gathers web-based 
information, extracts information from both unstructured 
and structured documents, and reaches a decision.  BIG 
uses an opportunistic linear planner and scheduler to direct 
its activities. TIBOR focuses on the end-to-end decision 
reasoning of analytical tasks and uses a MDP-based 
approach to reason about the inherent uncertainty of the 
domain. TIBOR is designed to be a fully-functional mixed-
initiative agent that leverages the state-of-the-art in 
visualization tools. The control panel in TIBOR also 
enables the human user to track the problem solving 
process at various levels of abstraction. 

Our next step is to complete integration of the AI 
blackboard and a variety of knowledge sources, including a 
sensemaking knowledge source that uses case-based 
reasoning and pattern recognition; as well as other 
visualization tools such as the semantic video browser [7]. 
Our goal is to ensure that TIBOR scales to real-world for 
example, investigating analysis problems, determining if 
there will be a pandemic in a certain region in the next two 
months, or if a certain person is involved in illegal 
activities. This includes equipping the blackboard to reason 
about multiple complex hypothesis simultaneously.   
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