
Figure 1: Pirolli and Card’s Model of Analyst’s
Problem Solving Approach

TIBOR: A Resource-bounded Information Foraging Agent for Visual Analytics

Dingxiang Liu, Anita Raja and Jayasri Vaidyanath
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

{dliu, anraja, jvaidyan }@uncc.edu

Abstract

 Visual Analytics is the science of applying reasoning and
analysis techniques to large, complex real-world data for
problem solving using visualizations. Real world
knowledge gathering and investigative tasks are very
complex because the problem-solving context is constantly
evolving, and the data may be incomplete, unreliable
and/or conflicting. We describe a mixed-initiative
reasoning agent that will assist investigative analysts to
choose from and reason about enormous databases of text,
imagery, video and webcast. This agent leverages
sequential decision making and an AI blackboard system to
support hypothesis tracking and validation in a highly
uncertain environment. Resource-bounded control
mechanisms enable the agent to reason about the
uncertainty. We have also designed a user interface that
will enable analysts to gather and sift large amounts of
evidence and to collaborate with and, where necessary, to
control the agent.

1. Introduction

 An analyst's problem solving task is complex because
the problem context and data are constantly changing.
Moreover, the data can be incomplete, unreliable and/or
conflicting. This type of problem solving requires
reasoning about uncertainty, generation and validation of
multiple hypotheses. The incompleteness, unreliability and
conflicting nature of the data imply a need for deciding
which data sources to query, and what types of analysis to
use for collecting, assimilating and abstracting the data into
evidence. Moreover the analysis tasks are usually time
critical and they have to use approaches ranging from
quick and dirty methods to detailed, high quality
investigations depending on characteristics the task.
A model of cognitive task analysis performed by analysts
has been developed by Pirolli and Card [9]. They have
identified two main, overlapping loops in the analyst’s
problem solving approach, a foraging loop and a
sensemaking loop. Figure 1 describes this process. The
foraging loop involves accessing external data sources;

searching and filtering the data; reading and extracting
information and creating the evidence file to (in)validate
hypothesis. The sensemaking loop involves iterative
generation of hypothesis; presentation of the intermediate
and complete hypothesis; and requesting the foraging loop
for evidence to support the hypothesis.

This paper gives an overview of an agent designed to
handle the information foraging process, The agent uses
an intelligent user interface to assist the analyst in his/her
decision making process. Analysis tasks involve
identifying and tracking multiple hypotheses by the
sensemaking loop. The foraging agent supports the
sensemaking loop, by gathering evidence to validate the
correct hypotheses and elimination of incorrect hypotheses
while solving a query pertaining to Visual Analytics. It
uses interactive visualizations [7, 12] to enable analysts to
gather and sift large amounts of evidence in a time-
bounded fashion and to collaborate with and, where

necessary, to control the analysis domain which is
inherently dynamic and uncertain. The contributions of
our work are (1) a mixed-initiative agent architecture to
assist analysts in their foraging tasks (2) using sequential
decision making and an AI blackboard approach for
gathering evidence to (in)validate hypotheses; and (3)
supporting interactive visualization and exploration at
every step of the problem solving process.

The rest of this paper is organized as follows. We first
describe the blackboard-based information foraging agent
and the resource-bounded reasoning techniques used by the
agent. We then describe the current status of the system
and present empirical results comparing the sequential
decision making approach to a deterministic approach.
Finally we summarize related work and present our future
work and conclusions.

2. A Time-Bounded Information Foraging
Agent

We have designed TIBOR, a TIme BOunded Reasoning
agent to handle the complex information foraging process
required in analysis domains. TIBOR leverages an AI
blackboard system [3, 4, 8] and resource- bounded control
mechanisms to support hypothesis tracking and validation
in a highly uncertain environment like the analysis domain.
Figure 2 describes the TIBOR’s agent architecture and
control flow. TIBOR handles three types of decisions:
gathering of large scale, high dimensional data from a

variety of sources, which might be linked multimedia data
as found on the web, broadcast video, time-dependent
transactional data, telecommunication data, or other types
of data; determining the type of processing to extract the
data from these sources; and determining appropriate
interactive visualization of these data. The following is a
description of TIBOR’s decision making process and
control flow. The sensemaking component [1] posts a set
of hypotheses and concepts to TIBOR’s blackboard (Step 1
in Figure 2) and this triggers the TIBOR agent. The
concepts are searchable entities that represent a hypothesis.
To support reasoning about time and quality trade-offs, and
thus a range of different resource/solution paths, TIBOR
contains problem-solving models called Taems [5] task
structures. Taems task structures are abstractions of the
low-level execution model and capture uncertainty in
outcome distributions. They are generated by the Task
Structure Modeler sub-component. The Task Structure
Modeler takes the concepts as input (Step 2) and generates
the corresponding Taems task structure (Step 3) that
enumerates multiple different ways (choices for databases,
visualization tools and user interactions) to obtain evidence
to verify the set of concepts. These different choices are
described statistically in the task structure in two
dimensions, duration and quality via discrete probability
distributions. We provide a detailed description of Taems
in the following section. The Taems task structure
associated with the concepts is then translated [10, 11] into
a Markov Decision Process (MDP) [2] which is also
described in detail in the discussion that follows. The

Figure 2: Functional Architecture of Foraging Component

Markov Decision Process Solver computes the optimal
policy for the MDP given the resource (deadline)
constraints and prescribes the best action (Step 4).
 User interactions play an important role in the foraging
analysis making this a mixed-initiative agent. TIBOR is
equipped with a user interface that will support the mixed-
initiative problem solving process. The analyst must be
given the ability to manually direct a search or override
actions suggested by the control mechanism, in order for
this automated agent to be accepted by the analyst
community. The contingency plans built into the MDP
policy will allow the control system to adjust dynamically
to such overrides. The automatic processing of the
visualization tools along with the user interactions will
determine the confidence in the concepts (Step 5). These
evidential data as well their confidence values are then
posted on the blackboard. The blackboard will then
propagate the confidence values to verify the associated
hypothesis. It is crucial for TIBOR to support both
opportunistic and planned verification of hypotheses and
concepts. It is probable that while gathering information to
verify a concept supporting one hypothesis, the belief for a
competing hypothesis increases. TIBOR’s control
component will model this possibility and then
opportunistically redefine the problem solving process to
gather evidence to verify the competing hypothesis.
 The heart of TIBOR agent is the AI blackboard system
[4] that has three main components: the Blackboard;
Knowledge Sources (KSs); and the Control Component.
The blackboard functions as a multileveled database for the
information that has been discovered and produced thus
far. This information includes raw data, partial solutions
and various problem solving states. The levels in TIBOR’s
blackboard are Goal, Hypothesis, Concept and Data, in
order of decreasing granularity. The Goal level stores the
resolution information. The Hypothesis level has one or
more hypotheses. Each hypothesis contains concepts which
are represented in the Concept level. The Data level
contains the data/evidences gathered to (in)validate the
various hypothesis. The layered hierarchy allows for
explicit modeling of concurrent top-down and bottom-up
processing, while maintaining a clear evidential path for
supporting and contradictory information. The information
at a given level is thus derived from the level(s) below it,
and it in turn supports the hypothesis at higher levels. For
example, when evaluating the validity of a particular
hypothesis, the system would examine the reliability of the
visualizations used to generate the properties of the object
upon which the validation will be made, each of which are
in turn different types of visual or text data.

The KSs are independent computational modules that
together contain the expertise needed to solve the problem.
They vary in their internal representation and
computational methods and do not interact directly with
each other. In TIBOR agent, the KSs include databases of
images, video, text and electronic transactions; the

visualization tools used to interact with these databases;
and the sensemaking component will serve as KSs. Some
examples are ImageDBKS, VideoDBKS, IntelReportsKS,
SemanticImageBrowserKS, TextKS, and SenseMakingKS
etc. A blackboard directs the problem-solving process by
allowing KSs to respond opportunistically to changes on
the blackboard and chooses the most appropriate KS
activation to execute based on the state of the blackboard
and the set of triggered KSs [4]. The control component
makes runtime decisions about the problem solving
process, specifically for a given hypothesis and resource
(time) constraints, it will determine the databases and tools
that need to be accessed. We have modeled this control
process as a Markov decision process-based [2] sequential
decision problem. The essence of sequential decision
problems is that decisions that are made in resource-
bounded, uncertain environments can have both immediate
and long term effects; the best action choice depends on
the types of future situations.

3. Taems-based Uncertainty Reasoning

 As described earlier, TIBOR receives concepts from the
sensemaking component and generates the corresponding
Taems task structure [5]. For the analysis domain, the
Taems task structure contains the various choices of
databases, visualization tools and levels of user interaction
relevant to the particular query/hypothesis. The Taems
language models problem solving patterns. We can model
the fact that one of several actions may be performed and
also that a given method may have several possible
outcomes, or that an agent has the option to perform a
facilitating task before the actual one. A quantitative
representation of the agent's choices using Taems allows
the agent to select that which is most appropriate in the
given context [6].

Figure 3: Taems Task Structure for Rob_A_Store
Task

 Figure 3 describes a simple example Taems task
structure that involves finding the evidence for the

hypothesis Rob_A_Store. The top-level task is
decomposed into two subtasks, Break_Window and
Take_Money. Since TIBOR is a mixed-initiative system,
user interaction plays an important part in the problem
solving process. Rob_A_Store is modeled in the task
structure by the q_sum quality attribution factor (qaf). The
q_sum qaf implies that the quality for the Rob_A_Store
task is the sum of the qualities of its Break_Window
subtask and Take_Money subtask. The task Break_Window
has two subtasks, the first subtask
Visualize_Break_Window will determine the mode for the
semantic image browser tool [12]; and the other subtask
UI_for_Break_Window will determine the data interaction
quality by the user. The qaf associated with the
Break_Window subtask is also a q_sum meaning its quality
is the sum of the Visualize_Break_Window Concept
subtask and the UI_for_Break_Window Concept subtask..
Visualize_Break_Window and UI_for_Break_Window
have two subtasks respectively. A q_exactly_one qaf is
functionally equivalent to an XOR operator. The quality of
the Visualize_Break_Window Concept is the quality of any
of its subtasks, provided that only one subtask has quality.
 Primitive actions in Taems, called methods, are
characterized statistically in two dimensions: quality and
duration. Quality is a deliberately abstract domain-
independent concept that describes the contribution of a
particular action to overall problem solving. Thus,
different applications have different notions of what
corresponds to quality. We plan to obtain the quality and
duration distributions for the tools and user interaction
tasks from statistical studies of tools use and analyst user
interaction. A quality distribution Q (38 0.8 20 0.2) implies
that the action will obtain a quality of 38, 80% of the time
and a quality of 20, 20% of the time.
LQ_Vis_Break_Window and HQ_Vis_Break_Window in
Figure 3 are the two alternative ways of visualizing the
data related to the Visualize_Break_Window Concept. The
former will open up the images quickly in low quality
mode using a low pixel rate; the latter will take a longer
time to load the images but will have higher precision of
the images and obtain greater quality. The enables non-
local relationship from the Visualize_Break_Window
Concept to the methods LQ_UI_Break_Window and
HQ_UI_Break_Window implies that the
Visualize_Break_Window Concept has to accrue non-zero
quality for the primitive actions related to user interaction
to be successful. In other words, the images in the database
have to be successfully rendered by the visualization tool
for the user to have useful interactions with the data.

In order to determine the optimal action choices, the
Taems task structure is translated into a Markov Decision
Process by initializing a state set and identifying the
possible actions and expanding each possible outcome
which are characterized by discrete quality, cost and
duration values.

4. Markov Decision Process

 A Markov Decision Process (MDP) [2] is a
probabilistic model for decision making and planning. It
uses dynamic programming to decide on the optimal policy
that yields the highest expected utility. MDPs capture the
essence of sequential processes and are used to compute
policies that identify, track, and plan to resolve confidence
values associated with blackboard objects, which in this
application correspond to evidence and hypotheses about
the evidence.
 A Markov Decision Process has four components: a set
of actions (A), a set of states (S), a probability function (P),
and a reward function (R). Pa(ss') is a probability function
denoted as the probability of transitioning from state s to s'
via executing action a, while Ra(S) is a reward function
defined by the reward received for taking action a. The
solution to a MDP is a policy π which is a mapping from
states to actions. The value function Vπ(s) is the expected
cumulative reward of executing policy π starting in state s.
It can be expressed as
 Vπ(s) = E [rt+1 + rt+2 …| st = s, π]
Where rt is the reward received at time t, st is the state at
time t.
 An optimal policy is one that maximizes the expected
value of the policy. The optimal value function, written as
V*, is associated with a specialized form of the Bellman
equations:
 V*(s) = max ∑s' P(s' | s, a) [R(s' | s, a) + V* (s')]
 The MDP solver receives a task structure along with an
associated deadline from the Taems task structure modeler
sends the task structure it generates to the MDP solver.
This deadline to validate the hypothesis can be specified by
either the user or the sensemaking component. Suppose the
deadline is provided as an input to the system and a policy

Figure 4: A partial view of the Markov Decision
Process describing states, actions and transition
probabilities for the Rob_A_Store task

is computed as described in section 2. Figure 4 shows the
policy computed for a deadline of 85 time units.

The policy obtained from the MDP assists the analysts
in looking at the trade-offs between the greedy choice of
actions and the optimal choice of actions in dynamic and
uncertain domains.

5. TIBOR In Execution

 Our current implementation of TIBOR leverages the
Taems representation and the MDP-based sequential
decision making process. It also supports the semantic
image browser [12] and allows for user interaction. We
plan to integrate the more complicated reasoning of
blackboard into the agent in the near future. The following
is a description of the implemented system along with
screen shots when executing the Rob_A_Store task with a
deadline of 85 time units.

TIBOR has a control panel, shown in the left window of
Figure 5 that allows the user to interact with the agent by
specifying his/her choices and also to track the progress of
the problem solving process. It can be thought of as a
dashboard having all the controls to manage the user’s
decision-making process. The control panel provides two
types of views, the current view provides the decisions
made by system on sources, analysis tools and
visualization tools as well as interaction decisions on
interactions made by the user and the future view provides
the analyst choices about data sources, analysis tools,
visualization tools and hypothesis. The control panel also
has a time slot that keeps the user informed about the time
used. The Executed Methods window lists all the actions
that have been executed so far.

The system is designed to run in two modes, minimized

(precognitive) mode and the maximized mode. The
minimized mode is as shown in Figure 5. The maximized

mode will display the entire Taems structure under
consideration and the corresponding MDP. The View Task
Structure button displays the TAEMS task structure as a
snapshot of the current state of problem solving. The View
Markov Process button will enable the users to view the
decision process as well as the optimal policy. The control
panel also provides the user with the accumulated quality
to show the quality accrued after each action completes
execution. When an action is chosen the control panel
triggers the associated visualization tool (the semantic
image browser) as shown in the right window of Figure 5.
The agent continues its execution providing
recommendations for user interaction along the way. The
left window of Figure 5 is the screen shot of the control
panel. It provides a list of actions executed, the
corresponding quality and duration values, the
accumulated quality for the top-level task and used
problem solving time.

DL AQDS SDDS AQPOL SDPOL t-test
10 0 0 20 2.11 2.4837E-10
28 33.2 6.20 47.6 5.06 0.00095931
32 34.4 5.80 60.6 4.62 2.52176E-09
46 58.8 3.80 88.6 8.28 4.13636E-06
68 85.6 5.06 103.6 5.06 5.5741E-05
85 107.6 5.06 107.6 5.06 1

6. Empirical Results

In this section, we describe our efforts to evaluate the
MDP-based decision making mechanism for task structures
representing different deadlines. As described earlier, the
MDP approach produces a policy that will dynamically
adjust the problem solving process to the deadline and
runtime execution characteristics. We also define a
deterministic process scheduler that builds a static schedule
with the highest possible quality for the deadline. An
example of deterministic schedule (DS) in Figure 3 is:

{HQ_Vis_Break_Window, HQ_UI_Break_Window,
HQ_Vis_Take_Money, HQ_UI_Take_Money}. These task
structures are variations of structure in Figure 3.

Due to the uncertainty in method execution as described
in section 3, there is uncertainty in the quality and duration
distributions of the deterministic schedule (DS). For
example, although not shown in the Figure 3, the quality
distribution for method HQ_UI_Take_Money is (20 0.6 10
0.4) and duration distribution for this method is (26 0.4 36
0.6). So the quality distribution for DS of the task structure
in Figure 3 is (108 48% 98 32% 90 12% 80 8%) and the

Figure 5: Screenshot of TIBOR in the midst of
executing HQ_UI_Take_Money method: the
control panel is on the left and the semantic
image browser on the right

Table 1: Comparison of Quality of
Deterministic Schedule (DS) and the policy
(POL) computed for the corresponding Markov
Decision Process. DL is deadline; AQ is
average quality and SD is the standard
deviation

duration distribution is (82 20% 92 30% 84 20% 94 30%)
which captures the uncertainty in the schedule execution.

The experiment was designed to compare the quality and
duration of the MDP policy for task structure representing
different deadlines to that produced by the deterministic
plan. We generated six example task structures based on
the structures in Figure 3 with deadlines of 10, 28, 32, 46,
68 and 85 respectively. We also varied the quality and
duration distributions of the leaf nodes for each example.

Given the duration distributions of the task structures,
deadlines in the 60-100 range are considered loose
deadlines, 20-60 time units are considered medium
tightness deadlines and 0-20 time units are categorized as a
tight deadline. We used the MDP-based controller to
generate policies and ran ten simulations for each task
structure and recorded the quality obtained at the top-level
task as well as the total execution time for each run. Then
the deterministic schedule was executed ten times and we
recorded the average quality obtained for each deadline as
well as the average execution time.

The results of the experiments comparing quality are
shown in Table 1. Each row in the table represents a
specific deadline. AQDS and SDDS are the quality and
standard deviation obtained by averaging results from ten
real-time simulation runs of the deterministic schedule
computed for each of the six task structures. AQPOL and
SDPOL are the quality and standard deviation obtained by
averaging results from ten real-time simulation runs of the
MDP computed for each of the six task structures. Column
four represents a two-tailed t-test for qualities by ten times
executions of MDP method and deterministic plan. Row
one represents the task structure with a tight deadline. For
the first five rows, the t-test value is less than 0.05. Hence
for these deadlines, performance of MDP schedule is
statistically significantly different from the performance of
the deterministic plan. For row six, the t-test value is 1.
Hence there is no significant difference for deadline 85.
Because the deadline 85 is so loose that deterministic plan
can complete all methods to obtain same high quality with
MDP method.

The results comparing execution-time schedule
durations are shown in Figure 6. All data points except one
(when the deadline is 85) show the MDP method uses the
total allowed time more effectively than the deterministic
schedule. It means MDP method can take advantage of
time to obtain maximum quality without exceeding
deadline.

We now will describe some sample execution runs to
elucidate this discussion. Suppose the deadline is 10 time
units, the deterministic schedule does not execute because
the duration of the very first method/action
HQ_Vis_Break_Window is greater than 10 time units (c.f.
Figure 3). Suppose the deadline is 46, the deterministic
schedule executes HQ_Vis_Break_Window and
HQ_UI_Break_Window. The MDP method adapts its policy
and uses the allowed time more effectively to execute

actions: HQ_Vis_Break_Window, LQ_UI_Break_Window,
LQ_Vis_Take_Money, and LQ_UI_Take_Money. So for
deadline 46, the MDP method produces greater quality
than the deterministic method. Suppose the deadline is 85,

this deadline is so loose that both the MDP and
deterministic approach execute the following schedule
{HQ_Vis_Break_Window, HQ_UI_Break_Window,
HQ_Vis_Take_Money, HQ_UI_Take_Money} and produce
same quality. Thus both Table 1 and Figure 6 show that the
MDP policy performs better than the deterministic method
as it is able to adapt to the uncertainty and dynamism of the
runtime environment.

7. Discussion

We have described TIBOR, a mixed-initiative agent
capable of assisting humans in complex analysis tasks
using visualizations and an intelligent user interface. We
have identified abstract representations of these tasks to
assist in the automated analysis as well as integrated the
agent with an image database and the semantic image
browser visualization tool. We have also implemented an
MDP-based resource-bounded control mechanism that will
reason about uncertainty in the environment as well as in
the complex real-world data.

The sensemaking KS [1, 9] will be invoked to perform
identification of novel situation story understanding and
plan recognition. Additionally, in novel situations, the
sensemaking KS should be equipped to handle situation
construction, new hypothesis generation, and plan
adaptation. TIBOR’s foraging capabilities, on the other
hand, include identifying interesting data to initiate the
problem solving process as well as efficiently gather
evidence to support/refute hypothesis generated by the
sensemaking KS.

Blackboard-based architectures have been previously
used for complex information gathering and analysis tasks.
 Morrison and Cohen [3] use a Bayesian blackboard called

Figure 6: Comparison of Duration

AIID to serve as a prototype system for analysis and data
fusion. BIG (Lesser, V. et al., 2000) is a resource-Bounded
Information Gathering agent that combines several
sophisticated AI components. BIG gathers web-based
information, extracts information from both unstructured
and structured documents, and reaches a decision. BIG
uses an opportunistic linear planner and scheduler to direct
its activities. TIBOR focuses on the end-to-end decision
reasoning of analytical tasks and uses a MDP-based
approach to reason about the inherent uncertainty of the
domain. TIBOR is designed to be a fully-functional mixed-
initiative agent that leverages the state-of-the-art in
visualization tools. The control panel in TIBOR also
enables the human user to track the problem solving
process at various levels of abstraction.

Our next step is to complete integration of the AI
blackboard and a variety of knowledge sources, including a
sensemaking knowledge source that uses case-based
reasoning and pattern recognition; as well as other
visualization tools such as the semantic video browser [7].
Our goal is to ensure that TIBOR scales to real-world for
example, investigating analysis problems, determining if
there will be a pandemic in a certain region in the next two
months, or if a certain person is involved in illegal
activities. This includes equipping the blackboard to reason
about multiple complex hypothesis simultaneously.

8. Acknowledgement

 We thank William Ribarsky and Robert Kosara for
discussions on TIBOR's interface. We also thank Kristin
Cook and the anonymous reviewers for their feedback. We
would like to thank Ashok Goel and his team at Georgia
Tech for sharing the details of the Rob_A_Store pattern
which we used to generate the corresponding TAEMS task
structure. These patterns were obtained as a result of
processing the VAST-2006 data set
(http://conference.computer.org/vast/vast2006). This work
was sponsored by the National Visualization and Analytics
Center (NVAC) under the auspices of the Southeastern
Regional Visualization and Analytics Center. NVAC is a
U.S. Department of Homeland Security Program led by
Pacific Northwest National Laboratory.

References

[1] Adams, S. and Goel, A., A STAB at Making Sense of VAST
Data. To Appear in AAAI-2007 Workshop on Plan, Activity, and
Intent Recognition, Vancouver, Canada, July 23, 2007.
[2] Bertesekas, D. and Tsitsiklis, J., Neuro-Dynamic
Programming, Athena Scientific, Belmont, MA., 2006.
[3] Morrison, C. and Cohen, P., The Hats Simulator and Colab:
An Integrated Information Fusion Challenge Problem and
Collaborative Analysis Environment. ISI 2006: 105-116.
[4] Corkill, D., Blackboard Systems AI Expert, 1991, 6(9): pp.
40-47.

[5] Decker, K., TAEMS: A framework for environment centered
analysis and design of coordination mechanisms, in Foundations
of Distributed Artificial Intelligence, Chapter 16, G O’Hare and
N. Jennings (eds.), Wiley Inter-Science, January 1996, pp. 429-
448.
[6] Horling, B., Lesser, V., Vincent, R., Wagner, T., Raja, A.,
Zhang, S., Decker, K., and Garvey, A., The TAEMS White Paper
Unpublished, January 1999.
[7] Luo, H., Fan, J., Yang, J., Ribarsky, W., and Satoh, S.,
Exploring Large-Scale Video News via Interactive Visualization.
Charlotte Visualization Center Technical Report, CVC-UNCC-
06-04, 2006.
[8] Lesser, V., Horling, B., Klassner, F., Raja, A., Wagner, T.,
and Zhang, S., BIG: An Agent for Resource-Bounded Information
Gathering and Decision Making In Journal of Artificial
Intelligence, 2000 Special Issue entitled 'Internet Applications',
May 2000, vol 118, issue 1-2, pp. 197-244.
[9] Pirolli, P. and Card, S., The Sensemaking Process and
Leverage Points for Analyst Technology as Identified Through
Cognitive Task Analysis. Proceedings of 2005 International
Conference on Intelligence Analysis, 2005, pp. 2-4.
[10] Raja, A., Lesser, V. and Wagner, T., Toward Robust Agent
Control in Open Environments. Proceedings of the Fourth
International Conference on Autonomous Agents, ACM Press,
2000,pp.84-91.
[11] Raja, A. and Lesser, V., A Framework for Meta-level
Control in Multi-Agent Systems. Proceedings of Autonomous
Agents and Multi-Agent Systems, 2007.
[12] Yang, J., Fan, J., Hubball, D., Gao, Y., Luo H. and Ribarsky,
W., Semantic Image Browser: Bridging Information Visualization
with Automated Intelligent Image Analysis. Charlotte
Visualization Center Technical Report CVC-UNCC-06-02, 2006.

