
Coordinating Agents’ Meta-Level Control

Anita Raja
Department of Software and Information Systems

The University of North Carolina at Charlotte
Charlotte, NC 28223

anraja@uncc.edu

Victor Lesser
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003
lesser@cs.umass.edu

Abstract

Embedded systems consisting of collaborating agents
capable of interacting with their environment are be-
coming ubiquitous. It is crucial for these systems to be
able to adapt to the dynamic and uncertain characteris-
tics of an open environment. The question of when this
adaptation process should be done and how much effort
should be invested in the adaptation becomes especially
challenging in the context of multi-agent systems. We
present a generalized agent framework for meta-level
control called GeMEC. We describe GEMEC’s decen-
tralized Markov Decision Process (DEC-MDP)-based
model for decision making in Netrads, a tornado track-
ing application. This model will capture interactions
where meta-level decisions made in one agent’s MDP
can affect meta-level MDPs of other agents. The cost
of meta-level control can be controlled by constructing
and evaluating the DEC-MDPs offline.

Introduction
Embedded systems consisting of collaborating agents capa-
ble of interacting with their environment are becoming ubiq-
uitous. It is crucial for these systems to be able to adapt to
the dynamic and uncertain characteristics of an open envi-
ronment. The adaptation needs to be based on the priority of
tasks; availability of resources; and availability of alternative
ways of satisfying these tasks as well as tasks expected in the
future. Some important questions are when this adaptation
process should be done; how much effort should be invested
in the adaptation as opposed to just continuing with the cur-
rent action plan; and the ramifications of making these deci-
sions in a multi-agent context.

Bounded rationality (Russell and Wefald 1989), the abil-
ity to reason about resource allocation to computation at
any point in time, has been used in the context of be-
liefs, intentions and learning (Doyle 1983), intelligent sys-
tem design (Horvitz 1988), problem solving and search (Si-
mon and Kadane 1974) and planning (Stefik 1981). Rus-
sell, et al. (Russell, Subramanian, and Parr 1993) cast the
problem of creating resource-bounded rational agents as a
search for the best program that an agent can execute. In

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

searching the space of programs, the agents, called bounded-
optimal agents, can be optimal for a given class of pro-
grams or they can approach optimal performance with learn-
ing, given a limited class of possible programs. Schut and
Wooldridge (Schut and Wooldridge 2001) observed that a
Markov Decision Process (MDP)-based model toward de-
cision making is most similar to the bounded optimality
model. Cox (Cox 2005) provides a review of metacogni-
tion research in the fields of artificial intelligence and cogni-
tive science. To our knowledge, meta-level control in com-
plex agent-based settings was first explored in our previous
work (Raja 2003; Raja and Lesser 2007), where we devel-
oped a sophisticated architecture that could reason about al-
ternative methods for computation, including computations
that handled simple negotiation between two agents. This
paper builds on results from this earlier work and opens
a new vein of inquiry by addressing issues of scalability,
partial information and complex interactions across agent
boundaries in real domains. It includes defining a general-
ized agent framework for meta-level control called GeMEC
(see Figure 2) . A decentralized Markov Decision Process
(DEC-MDP)-based model with the ability to model interac-
tions so that meta-level decisions made in one agent’s MDP
can affect meta-level MDPs of other agents is proposed.

The generalized framework for meta-level control could
significantly impact multi-agent systems research in that one
can identify domains and scenarios where meta-level control
would be advantageous to overall multi-agent performance.
It could also impact other fields that deal with uncertainty
and non-stationarity including robotic path-planning. This
paper is structured as follows: We first describe the tax-
onomy of agent decisions and their interdependencies first
from a single-agent perspective and then from a multi-agent
perspective. The relevance of these research issues with in
the context of Netrads, a real-world tornado-tracking appli-
cation is presented followed by a description of a general-
ized framework for meta-level control. We then present the
conclusions and future work directions.

Taxonomy of Agent Decisions
Agents in embedded systems operate in an iterative three-
step closed loop: receiving sensations from the environment;
performing internal computations on the data; and respond-
ing by performing actions that affect the environment either



using effectors (Sutton and Barto 1998) or via communi-
cation with other agents. Two levels of control are associ-
ated with this sense, interpretation and response loop: de-
liberative and meta-level control. This model is compara-
ble to Figure 1 described in (Cox and Raja 2007). The
lower control level is deliberative control (also called ob-
ject level), which involves the agent making decisions about
what local problem solving to perform in the current con-
text (also called domain actions) and how to coordinate with
other agents to complete tasks requiring joint effort. These
deliberations may have to be done in the face of limited re-
sources, uncertainty about action outcomes and in real-time.
Tasks in these environments can be generated at any time
by the environment or other agents and generally have dead-
lines where completion after the deadline could lead to lower
or no utility.

Figure 1: Decision Taxonomy

Single-Agent Meta-Level Control
At the higher control level is meta-level control, which in-
volves the agent making decisions about whether to delib-
erate, how many resources to dedicate to this deliberation
and what specific deliberative control to perform in the cur-
rent context. In practice, meta-level control can be viewed
as the process of deciding how to interleave domain and de-
liberative control actions such that tasks are achieved within
their deadlines and also allocating required amount of pro-
cessor and other resources to these actions at the appropriate
times. For example, suppose the current time is 10 and an
agent is in the midst of executing a set of high quality tasks
with a deadline to complete the task at time 25. At time
15 the agent receives a new medium quality taskTnew with
expected duration of 10 and a deadline of 40. The sensible
meta control decision would be for the agent to delay delib-
erating about how to accomplish taskTnew in the context of
ongoing activities until the existing task set has completed
execution (time 25). This would guarantee that the existing
task set completes within its deadline and quality can still
be gained by processingTnew by time 40. The meta-level
control decision process should be designed to be computa-
tionally inexpensive, thus obviating the need for meta-meta-
level control.

Meta-level control also involves choosing among alterna-
tive deliberative action sequences including choosing among
various alternatives for scheduling/planning ; choosing be-

tween scheduling/planning and coordination; and, allocating
extra time for learning activities, etc. Consider the follow-
ing example: suppose the current time is 6 and an agent has
two tasks:Tx, a high quality task with expected duration of
10 and deadline 30; andTy, a low quality task with expected
duration 6 and deadline 30. The meta-control decision could
be to spend 5 time units doing a detailed high-quality delib-
eration aboutTx to find a good plan for the high quality task
and two units doing a quick and dirty deliberation to gen-
erate a plan forTy (the lower quality task). The remaining
time not used by deliberative activities will be allocated to
successfully execute both tasks.

Multi-Agent Meta-Level Control
In the multi-agent context, meta-level control decisions at
different agents need to be coordinated (Alexander et al.
2007). These agents may have multiple high-level goals
from which to choose, but if two or more agents need to
coordinate their actions, the agents’ meta-control compo-
nents must be on the same page. That is, the agents must
reason about the same problem and may need to be at the
same stage of the problem-solving process (e.g., if one agent
decides to devote little time to communication/negotiation
before moving to other deliberative decisions while another
agent sets aside a large portion of deliberation time for ne-
gotiation, the latter agent would waste time trying to nego-
tiate with an unwilling partner). Thus if an agent changes
the problem solving context it is focusing on, it must no-
tify other agents with which it may interact. This suggests
that the meta-control component of each agent should have
a multi-agent policy, where the progression of what deliber-
ations agents do, and when, is choreographed carefully and
includes branches to account for what could happen as de-
liberation (and execution) plays out.

Determining the multi-agent policy is a complicated prob-
lem since the multi-agent policy is not expected to be simply
the union of all single-agent meta-control policies. Con-
sider for instance, two agents A1 and A2 are negotiating
about when A1 can complete methodM1 that enables A2’s
methodM2. This negotiation involves an iterative process
of proposals and counter-proposals where at each stage A2
generates a commitment request to A1, A1 performs local
optimization computations (scheduling) to evaluate commit-
ment requests; this process repeats until A1 and A2 arrive
at a mutually acceptable commitment. The meta-level con-
trol decision would be to ensure that A1 completes its lo-
cal optimization in an acceptable amount of time so that A2
can choose alternate methods in case the commitment is not
possible. In setting up a negotiation, the meta-level control
should establish when negotiation results will be available.
This involves defining important parameters of the negoti-
ation including the earliest time the target method will be
enabled. Two agents with different views of meta-control
policy for negotiation need to be reconciled in order to set
up the earliest starting time parameter used in the negotia-
tion process.

A second multi-agent meta-level control research issue in-
volves exploring how to dynamically split the agent network
into neighborhoods that are coordinated but not necessarily



the same. Coordinated meta-level control decisions do not
mean that meta-level control has to be the same in all parts
of the network; instead, it involves finding consistent sets
for different parts of the network. A third issue involves
problem-solving contexts, which contain agent state infor-
mation and other data required for decision making. We
identify two types of contexts: 1) current context, which is
the agents context in the midst of execution; and 2) pend-
ing context, where an agent deliberates about various what-
if questions related to coordination with other agents. At
any time, an agent has one current context and may have
one or more pending contexts. When an agent is assigned a
task, it creates a pending context where deliberative activi-
ties such as negotiation, local scheduling, and policy com-
putation are performed. The meta-level control component
will have to determine which pending context to deliberate
about and when to switch from executing current context
and deliberate about a pending context.

Multi-agent meta-control suggests the need for some kind
of meta-level message passing. There are important trade-
offs between the amount of communication (both size and
number of messages) and resulting overhead, and the useful-
ness of such communication. Agents must determine what
kind of information is contained in a meta-level message.
In some situations, it may be enough for the agent to sim-
ply let others know that it is thinking about context X; in
other cases, such as when agents are more tightly coupled,
an agent may need to communicate some partial results of its
current thinking as well. Agents must also reason about how
to handle meta-control messages from others and coordinate
when these messages should be received and handled

Relevance to a Real-World Application
The following is a description of a real-world applica-
tion that will need this type of meta-level control. Ne-
tRads (Krainin, An, and Lesser 2007; Zink et al. 2005) is
a network of adaptive radars controlled by a collection of
Meteorological Command and Control (MCC) agents that
instruct where to scan based on emerging weather condi-
tions. The NetRad radar is designed to quickly detect low-
lying meteorological phenomena such as tornadoes and each
radar belongs to exactly one MCC. The MCC agent gath-
ers raw data from the radars and runs detection algorithms
on weather data to recognize significant meteorological phe-
nomenon. The time allotted to the radar and its control sys-
tems for data gathering and analysis is known as a heart-
beat. Results are used to determine potential weather scan-
ning tasks for the next scanning cycle. Tasks are classified
as internal tasks (they are squarely under the purview of one
agent only) and boundary tasks (shared by multiple MCCs).
It is important for MCCs to coordinate both to avoid waste-
ful redundant scanning as well as to ensure multiple radar
scans when required.

Each MCC communicates with its neighbors to agree on
what weather scanning tasks it should do and how these
tasks should be done in concert with tasks of the neigh-
bors. The MCC then uses a three-step decentralized process
to determine the best set of scans for the available radars
that will maximize the sum of the utilities of the chosen

tasks. It executes a local combinatorial optimization algo-
rithm to determine the best configuration from a local point
of view, then exchanges these configurations with neighbor-
hood agents and a hill-climbing negotiation algorithm to de-
termine which radars to activate and how much time to allo-
cate to each task. This process of local optimization and ne-
gotiation is time-bounded since radars need to be constantly
repositioned to track weather phenomena and recognize the
arrival of ones.

In the NetRads domain, an example domain action would
be a radar scan of a weather task. The deliberative action
in each heartbeat would be the MCC spending some initial
time in processing the radar data obtained during the last
heartbeat, then performing a local optimization to determine
the configuration of the radars under its control, followed
by negotiation rounds of alternating communication and re-
computation of the local configuration. The meta-level con-
trol component guides the optimization and negotiation ac-
tions of the MCC.

The main research questions to be addressed in this work
are: How to make meta-level control decisions about delib-
erations and problem solving contexts? How to coordinate
the meta-level decision making process among agents? How
to ensure that meta-level control has low-overhead? How
to dynamically split the network into neighborhoods with
varying heartbeats? Which data to collect for performance
profiles? How to handle multi-agent meta-level control mes-
sages? How to capture and reason about the sequential na-
ture of these research issues? In the next section, we propose
a domain-independent framework that addresses these ques-
tions.

Solution Approach

Decision
Process
ComponentDecision

Process
Component

Performance
Profiles DB

Environment
Meta-level Layer

1. Trigger

2. Expected Performance

3. Alternatives

4. Environment
Observation

5. Current State

6. Deliberative
Action

7. Domain Action

8. Actual
Performance

9. Update

Performance
Profile
Learner

Problem
Abstraction
Component

Deliberative Layer

Current
State
Evaluator

Decision
Process
Component

Meta-level Layer

Meta-level Layer

Meta-level
Agent
Interaction

Figure 2: Control Flow in the Generalized Meta-level Con-
trol (GeMEC) Architecture)



The Generalized Meta-level Control (GeMEC) architec-
ture (Figure 2) consists of a Problem Abstraction compo-
nent, a Performance Profile Learner, a Decision Process
component and a Current State Evaluator. A trigger is an
event requiring the attention of the meta-level layer. It could
be the arrival of a new task or a change in the environment.
In Netrads, a triggering event occurs at every heartbeat since
emerging weather events need to be scanned and analyzed at
each heartbeat.

When the meta-level layer is triggered, the Problem Ab-
straction Component (PAC) extracts the associated task and
identifies high-level alternative ways by which the task can
be completed successfully. These alternatives are cap-
tured in a task structure called Meta-Alt task structure.
The PAC uses performance profile (Dean and Boddy 1988;
Hansen and Zilberstein 1996) information about the deliber-
ative action modes from a Performance Profile database to
determine these alternatives. The PAC will help control the
complexity of the meta-level decision process by weeding
out all superfluous information. This is especially relevant
in applications where each deliberation action can be per-
formed in different modes resulting in different performance
characteristics. For instance, scheduling as a deliberation ac-
tion can have multiple modes: heuristic scheduler (Wagner,
Garvey, and Lesser 1997), MDP-based scheduler (Musliner
et al. 2006), constraint-based scheduler (Smith et al. 2006)
etc.

The GeMEC framework is an extension of Cox and
Raja’s (Cox and Raja 2007) model that describes meta-level
reasoning among multiple agents (Figure 3). Using GeMEC,
we elaborate the functionality of the meta-level reasoning
module and propose a method for communication as well as
distributed decision making among the agents.

Figure 3: Cox and Raja’s Model for multi-agent meta-level
reasoning

In the Netrads application, an MCC has multiple deliber-
ation modes. Different amounts of time and resources can
be allocated to the heartbeat and within a heartbeat, differ-
ent allocations to optimization and negotiation cycles canbe

made. Figure 4 is an example of a task structure represent-
ing a set of meta-level alternatives and their associated qual-
ity distributions. Quality is a deliberately abstract domain-
independent concept that describes the contribution of a par-
ticular action to overall problem solving. Thus, different
applications have different notions of what corresponds to
model quality. The meta-level alternative task structure in
Figure 4 describes the agent choices for a particular Netrads
tornado tracking scenario. The agent can choose a 30 sec-
ond or 60 second heart beat. For each choice of heartbeat
duration, the agent can also choose the percentage of the
heartbeat duration that should be spent on local optimiza-
tion, assuming that the remaining time is spent on negotia-
tion. These choices for local optimization duration are repre-
sented as leaf nodes in the figure and their associated quality
distributions are specified. For example, choosing the leaf
nodeOpt=30%belonging to the 30 second heartbeat choice
indicates that 30% of 30 seconds (9 seconds) will be spent
on local optimization and the remaining 21 seconds will be
spent on negotiation and this will result in a quality value
of 10, 60% of the time and a quality value of 8, 40% of the
time.

Figure 4: Task structure describing Meta-level alternatives
for a specific Netrads scenario

Once constructed, the Meta-Alt task structure is then
sent to the Decision Process Component (DPC). In the
context of the Netrads application, the DPC converts the
meta-level alternative task structure into a Markov Deci-
sion Process (MDP) (Bertsekas and Tsitsiklis 1996) using
a previously developed algorithm (Raja and Lesser 2007;
Alexander and Raja 2006; Alexander, Raja, and Musliner
2008). DPC then computes the policy for the MDP and de-
termines the best deliberative action to recommend to the
deliberative layer given the current context.

An MDP-based decision process component is appropri-
ate for the Netrads application since the Meta-Alt task struc-
ture is expected to remain static in this application for ex-
tended periods of time. Also, the actions of the MCC may
not typically be adjusted from heartbeat to heartbeat. In our



Figure 5: Snapshot of MDP capturing Agent A1’s meta-level decision process

view, this justifies embedding the non-trivial cost of comput-
ing an optimal or near-optimal policy for the MDP inside the
meta-level reasoning loop. In applications with greater level
of dynamics, GeMEC’s decision process component could
be replaced by other decision processing technologies such
as stochastic online optimization methods (Bent and Henten-
ryck 2004). The choice of the decision process component
mechanism depends on the dynamics of the application and
the cost of computing the action choices.

Procedure 1 summarizes the reasoning process:

Procedure 1 GeMEC Reasoning loop for Netrads
1: extract task
2: use Performance Profile database to generate Meta-Alt

task structure
3: send Meta-Alt task structure to DPC
4: convert Meta-Alt task structure to a MDP
5: derive optimal policy and recommend best action choice

In Netrads, the DPC could adjust the system heartbeat
to adapt to changing weather conditions. For example, if
many scanning tasks are occurring in a certain region, meta-
control may decide to use a shorter heartbeat to allow the
system to respond more rapidly. It is important to handle
different heartbeats for different neighborhoods of MCCs.
For example, suppose there is a neighborhood with a heart-
beat of 30 seconds and another one with a heartbeat of 60
seconds, with one MCC belonging to both neighborhoods.
Also suppose that this MCC is using a 30-second heartbeat.
We can choose between one of two protocols: After the end
of its first heartbeat, new information is sent to its neighbors

in the 60-second neighborhood, or the agent negotiates only
with its 30-second neighbors until its slower neighbors have
entered their next heartbeat.

The DPC can also adjust the parameters involved in the
calculation of an MCC’s local configuration in order to trade
off optimality for a shorter run time, which would allow
more rounds of negotiation to be performed. Spending more
time on negotiation may be preferable, for example, when
there are many boundary tasks compared to internal tasks.
In fact, the DPC could make this decision for each round in
the negotiation process. This would allow a fast estimate of
the optimal local configuration to begin negotiation and then
switch to a better optimization in later rounds, or perhaps be-
gin with the current brute force optimization and switch to
other methods after negotiating for a while.

Our approach to the DPC involves formalizing the agent’s
meta-level control problem using a MDP (Alexander and
Raja 2006; Raja and Lesser 2007). The advantage of us-
ing a MDP to model the meta-level control problem is two-
fold : the MDP supports sequential decision making allow-
ing for non-myopic decision making; and meta-level rea-
soning will be inexpensive as it will involve only MDP
policy lookup. Several researchers (Peshkin et al. 2000;
Nair et al. 2003) have studied multi-agent MDPs but most
have assumed full (individual) observability. However, like
Becker et. al. (Becker et al. 2003), the Netrads applica-
tion involves agents having partial and different views of
the global state. Decentralized Markov Decision Process
(DEC-MDP) (Bernstein, Zilberstein, and Immerman 2000)
is a suitable framework for these types of problems. A
DEC-MDP is a DEC-POMDP that is jointly fully observ-



able (i.e., the combination of both agents observations de-
termine the global state of the system). The complexity of
DEC-MDPs has been shown to be NEXP-complete for finite
horizon problems and undecidable for infinite-horizon prob-
lems (Bernstein, Zilberstein, and Immerman 2000). The
complexity is mainly due to the explosion in states, action
choices and observations due to agent interactions.

One way to overcome this complexity is to approximate
the solution. An approximation of particular interest (Gold-
man and Zilberstein 2005) leverages the idea that a lot of de-
centralized problems have some structure with influence on
the level of decentralization. The key idea is that a feasible
approximation can be found by decomposing the global re-
ward function into local and temporal problems. A commu-
nication policy is then used to synchronize the single-agent
MDPs occasionally. This would allow agents to exchange
information at certain times to obtain global state (Xuan,
Lesser, and Zilberstein 2001). When not communicating,
the agents will act independently of each other and not nec-
essarily follow the optimal policy. This local policy of an
agent can be viewed as Sutton’s options (Sutton, Precup, and
Singh 1999). The options will have terminal actions, specif-
ically communication actions. In this model, it is also as-
sumed that all options are terminated whenever atleast one
of the agents initiates communications. It is also assumed
that when the agents exchange information the global state
of the system is revealed.

This model is shown to be equivalent to a multi-agent
markov decision process (MMDP) (Goldman and Zilber-
stein 2005). The optimal policy would involve searching all
over possible pairs of local single agent policies and commu-
nication policies. For example, each agent needs to ensure
that it enters into a negotiation mode only upon agreement of
the partner agent to enter into the similar mode. If the other
agent refuses to negotiate, the requesting agent should make
sure that it does not enter in to a negotiation mode. This
behavior will be manifested by an appropriate definition of
the reward function and will enforcecoordinated meta-level
control. The reward function for each states will have two
components and can be defined as:R(s) = Rlocal + Rcoord

whereRlocal is the reward obtained from executing local
actions and theRcoord is the reward obtained from actions
requiring coordination. This reward function has to capture
the fact that an agent shouldn’t consider doing negotiationas
an action choice for a particular time frame unless the other
agent is choosing the negotiation action for an overlapping
time frame.

In addition to agreeing to negotiate, the agents have to
be on the same page as far negotiation parameters are con-
cerned. Each agent also needs to determine how much
time/resources to allocate to the negotiation process. The
motivation for longer durations would be to improve the suc-
cess rate of negotiation. The agent can also choose to inter-
leave the negotiation with a local domain action execution so
that the negotiation has more end-to-end time, thus account-
ing for uncertainty in outcome which improves the success
probability of the negotiation.

We now describe a simple example of DPC’s decision
making process. Consider a scenario where there are two

agents A1 and A2 with an interdependency requiring nego-
tiation. Figure 5 describes the meta-level MDP for agent
A1. StateS21is a state where the agent has to communicate
with agent A2 and determine whether A2 is willing to nego-
tiate in the next time period. This is represented by action
a11which has a duration of 2 units. Agent A2 can respond
with one of two responses: agree to negotiate (outcome o1)
or refuse to negotiate (outcome o2). The states reached and
action choices available to agent A1 vary depending on the
outcome of actiona11. The actions available from stateS22
allow agent A1 to allocate different amounts of time to nego-
tiation where the entire processor is allocated to negotiation
only (durations 3 and 6 for actionsa12anda13respectively)
or the agent can choose to interleave the negotiation with a
domain action (methodM2) for a duration of 10 units (ac-
tion a14). If outcome o2 occurs, agent A1 will not move
into a negotiation phase and instead try to ensure that it uses
its resources efficiently by choosing one of its local domain
actions (actionsa15anda16).

Conclusions and Future Work
In this paper we map the various multi-agent meta-level
questions to a single generalized formalization of meta-level
control; we then elaborate how these issues will be ad-
dressed in a real tornado tracking application; finally, we
describe a methodology to construct a class of MDPs with
the ability to model interactions among multiple meta-level
decision process components. Our next step is to further
elaborate the details of the example and study the appropri-
ateness for all the meta-level issues proposed in this paper.
We will also collect performance profiles for various sce-
narios in the Netrads application and empirically verify our
MDP based-model and study the value for explicit versus
implicit communication among agents.

Acknowledgments
We thank George Alexander, Michael Krainin and Jason
Hillgen for their assistance in studying the multi-agent meta-
level control problem in the context of Netrads. We thank
the reviewers for their helpful feedback.

References
Alexander, G., and Raja, A. 2006. The role of problem
classification in online meta-cognition. InProceedings of
2006 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, 218–225.
Alexander, G.; Raja, A.; Durfee, E.; and Musliner, D.
2007. Design paradigms for meta-control in multi-agent
systems. InProceedings of AAMAS 2007 Workshop on
Metareasoning in Agent-based Systems, 92–103.
Alexander, G.; Raja, A.; and Musliner, D. 2008. Con-
trolling deliberation in a markov decision process-based
agent. InTo appear Proceedings of the Seventh Interna-
tional Joint Conference on Autonomous Agents and Multi-
Agent Systems.
Becker, R.; Zilberstein, S.; Lesser, V.; and Goldman, C. V.
2003. Transition-Independent Decentralized Markov Deci-
sion Processes. InProceedings of the Second International



Joint Conference on Autonomous Agents and Multi Agent
Systems, 41–48. Melbourne, Australia: ACM Press.

Bent, R., and Hentenryck, P. V. 2004. Regrets Only! On-
line Stochastic Optimization Under Time Constraints. In
Proceedings of the Nineteenth National Conference on Ar-
tificial Intelligence (AAAI-2004), 501–506.

Bernstein, D.; Zilberstein, S.; and Immerman, N. 2000.
The Complexity of Decentralized Control of Markov Deci-
sion Processes. InIn Proceedings of the Sixteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI), 32–37.

Bertsekas, D. P., and Tsitsiklis, J. N. 1996.Neuro-Dynamic
Programming. Belmont, MA: Athena Scientific.

Cox, M. T., and Raja, A. 2007. Metareasoning: A Man-
ifesto. Technical Report BBN TM-2028, BBN Technolo-
gies.

Cox, M. T. 2005. Metacognition in computation: a selected
research review.Artif. Intell. 169(2):104–141.

Dean, T., and Boddy, M. 1988. An analysis of time-
dependent planning. InProceedings of the Seventh Na-
tional Conference on Artificial Intelligence (AAAI-88), 49–
54. Saint Paul, Minnesota, USA: AAAI Press/MIT Press.

Doyle, J. 1983. What is rational psychology? toward a
modern mental philosophy.AI Magazine4(3):50–53.

Goldman, C., and Zilberstein, S. 2005. Goal-oriented
dec-mdps with direct communication. Computer Science
Technical Report TR-04-44, University of Massachusetts
at Amherst.

Hansen, E., and Zilberstein, S. 1996. Monitoring the
Progress of Anytime Problem-Solving. InProceedings
of the 13th National Conference on Artificial Intelligence,
1229–1234.

Horvitz, E. J. 1988. Reasoning under varying and uncertain
resource constraints. InNational Conference on Artificial
Intelligence of the American Association for AI (AAAI-88),
111–116.

Krainin, M.; An, B.; and Lesser, V. 2007. An Application
of Automated Negotiation to Distributed Task Allocation.
In 2007 IEEE/WIC/ACM International Conference on In-
telligent Agent Technology (IAT 2007), 138–145. Fremont,
California: IEEE Computer Society Press.

Musliner, D.; Durfee, E.; Wu, J.; Dolgov, D.; Goldman, R.;
and Boddy, M. 2006. Coordinated plan management us-
ing multiagent mdps. in distributed plan and schedule man-
agement. InDistributed Plan and Schedule Management:
Papers from the 2006 AAAI Spring Symposium.

Nair, R.; Tambe, M.; Yokoo, M.; Pynadath, D.; and
Marsella, S. 2003. Taming decentralized pomdps: To-
wards efficient policy computation for multiagent settings.
In Proceedings of the Eighteenth International Joint Con-
ference on Artificial Intel ligence (IJCAI).

Peshkin, L.; Kim, K.-E.; Meuleau, N.; and Kaelbling, L. P.
2000. Learning to cooperate via policy search. InSixteenth
Conference on Uncertainty in Artificial Intelligence, 307–
314. San Francisco, CA: Morgan Kaufmann.

Raja, A., and Lesser, V. 2007. A framework for meta-level

control in multi-agent systems.Autonomous Agents and
Multi-Agent Systems15(2):147–196.
Raja, A. 2003. Meta-level control in multi-agent systems.
PhD Thesis, Computer Science Department, University of
Massachus etts at Amherst.
Russell, S., and Wefald, E. 1989. Principles of metareason-
ing. In Proceedings of the First International Conference
on Principles of Knowledge Representation and Reason-
ing, 400–411.
Russell, S. J.; Subramanian, D.; and Parr, R. 1993. Prov-
ably bounded optimal agents. InProceedings of the Thir-
teenth International Joint Conference on Artificial Intelli-
gence (IJCAI-93), 338–344.
Schut, M., and Wooldridge, M. 2001. The control of rea-
soning in resource-bounded agents.Knowledge Engineer-
ing Review16(3):215–240.
Simon, H., and Kadane, J. 1974. Optimal problemsolving
search: All-or-nothing solutions. Computer Science Tech-
nical Report CMU-CS-74-41, Carnegie Mellon University.
Smith, S.; Gallagher, A.; Zimmerman, T.; and Barbulescu,
L. 2006. Multi-Agent Management of Joint Schedules.
In In Distributed Plan and Schedule Management: Papers
from the 2006 AAAI Spring Symposium.
Stefik, M. 1981. Planning and meta-planning.Artificial
Intelligence16(2):141–170.
Sutton, R., and Barto, A. 1998.Reinforcement Learning.
MIT Press.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Be-
tween MDPs and semi-MDPs: A framework for tempo-
ral abstraction in reinforcement learning.Artificial Intelli-
gence112(1-2):181–211.
Wagner, T.; Garvey, A.; and Lesser, V. 1997. Criteria-
Directed Heuristic Task Scheduling. UMASS Department
of Computer Science Technical Report TR-97-16.
Xuan, P.; Lesser, V.; and Zilberstein, S. 2001. Commu-
nication Decisions in Multi-agent Cooperation: Model and
Experiments.Proceedings of the Fifth International Con-
ference on Autonomous Agents616–623.
Zink, M.; Westbrook, D.; Abdallah, S.; Horling, B.; Lyons,
E.; Lakamraju, V.; Manfredi, V.; Kurose, J.; and Hondl,
K. 2005. Meteorological Command and Control: An
End-to-end Architecture for a Hazardous Weather Detec-
tion Sensor Network. InProceedings of the ACM Workshop
on End-to-End, Sense-and-Respond Systems, Applications,
and Services (EESR 05), 37–42.


