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Abstract—This paper addresses the importance and challenges
of establishing cooperation among self-interested agents in mul-
tiagent systems (MAS). We study MAS operating on highly-
connected random and scale-free (SF) networks. However, we
emphasize SF networks as these are prevalent in society and
nature. Existing imitation-based approaches for cooperation have
been shown to not fare very well in these highly-connected
networks. Motivated by studies that show the advantage of altru-
istic privacy buddies in online social networks to provide better
privacy guarantees in highly-connected networks, we present
a stochastic influencer altruistic agent (StIAA) mechanism for
cooperation. In StIAA, a small proportion of altruistic agents
which irrespective of their payoff, always cooperate with their
neighbors are introduced into a network of self-interested agents
that try to maximize their payoff by imitating the wealthiest
agents in their neighborhood. To determine optimality of their
action choices, the self-interested agents imitate the cooperative
action of their altruistic neighbors (should there be one) with
a small exploration probability. We show, both analytically and
experimentally, that StIAA leads to significantly higher cooper-
ation in highly-connected networks than the existing imitation-
based approaches. We also conduct a comprehensive study on
the performance of StIAA and the results indicate that it is both
robust and scalable.

I. INTRODUCTION

One of the enduring challenges in networked multiagent
systems (MAS) is to establish cooperation among the self-
interested agents for achieving a common goal [1], [2], [3],
[4]. Traditionally, the Prisoner’s Dilemma (PD) game has
been used as an abstract interaction model to capture the
tension between the personal and social goals of these agents.
Some simple imitation based approaches have been shown
to enhance the likelihood of cooperation when the agent
interaction is constrained by the underlying network topology
such as scale-free (SF) networks [5], [6]. In SF networks the
node degree follows power-law distribution independent of the
scale of the network, a feature suitable for large-scale MAS.
Also the SF structure is robust against self mutation and en-
vironmental perturbation. It is observed that many real-world
SF networks, such as social networks, are highly-connected
exhibiting large average connectivity [7], [8], [9]. For instance,
the average connectivity of a node in the Facebook network
is reported to be 190 [10]. It has been shown that imitation

based rules (e.g., imitate-best-neighbor (IB) [1] and stochastic
imitate-random-neighbor (SA) [5]1) that facilitate cooperation
in random networks and sparsely-connected SF networks
(average degree is 4) are unable to establish cooperation in
highly-connected SF networks [11]. Also, there exists a strong
theoretical argument based on natural selection showing that
high-connectivity among the nodes in SF networks results
in diminished or no cooperation [12]. However there are
many instances where it is critical to establish cooperation in
highly-connected networks. For example, achieving consensus
among the online social network (OSN) application users
about acceptable privacy settings for individual applications
is a key challenge [13].

In OSNs such as in Facebook (highly-connected SF net-
work), while self-interested agents always try to optimize
privacy setting policies of the third-party applications, it has
been shown [13] that the existence of special agents (altruistic
agents) who act as privacy buddies (or self-deployed policy-
recommender forums) [14] with better knowledge about the
app functionalities and requested permissions help provide
better privacy guarantees. We use this idea to motivate our
solution approach where a small percent of agents behave as
altruistic agents (those who always cooperate) work towards
biasing the self-interested agents to converge to a consensus
that optimizes privacy settings of the entire network. In this
paper, we describe our multiagent-based solution approach to
establish distributed cooperation in the user community. The
central research question we address is: how to establish coop-
eration in MAS operating on highly-connected SF networks?

We propose the design of a heterogeneous MAS composed
of both the altruistic and self-interested agents and show that it
performs significantly better in highly-connected SF networks.
Our stochastic influencer altruistic agent (StIAA) mechanism
is motivated by a novel definition of cooperation [15] in which
the otherwise competing agents decide to aid each other. Our
goal is to determine the conditions under which such cooper-
ation thrives. In other words, we try to bias the self-interested
behavior of the agents to make them cooperate with each other.
To do this, we introduce a small proportion of altruistic agents
in a self-interested society (similar to the influencer agents

1Henceforth these two approaches are referred as IB and SA respectively.



in [16], [17]). The altruistic agents are designed to always
cooperate with their neighbors while the self-interested agents
may cooperate or defect since their objective is to maximize
their utility by imitating the strategy of the wealthiest agents
in their neighborhood. However, since agents in SF networks
typically only have partial-observability of their environment
(access only to information about immediate neighborhood),
it is possible that the self-interested agents may get stuck in a
local maxima. Therefore, we enable these agents to determine
the optimality of their strategies by stochastically trying the
strategy of the altruistic agents in their neighborhood with a
small exploration probability [2]. By manipulating the self-
interested behavior of the large majority of the population,
the altruistic agents are able to facilitate cooperation. We
analytically show that this probabilistic exploration creates a
cluster of cooperators in SF networks that helps to foster the
evolution of cooperation. Our comprehensive empirical study
substantiates this claim.

Previously altruistic agents were used in the context of
coordination game [16], [17] whereas in this work we use the
notion of altruism to solve a cooperation game. Both games
are structured as 2-person 2-choice symmetric games to model
the common problem of social norm emergence from a game-
theoretic perspective [18]. While coordination game is suitable
to model conventional norm problems (no conflict in interest
between the individual and collective interests), cooperation
game is used to model essential norm emergence problems in
which conflict exists between agent’s self-interest and collec-
tive interest [19]. We believe the cooperation game studied in
this paper captures more complex multiagent interactions.

Exploration in the strategy space is a standard approach
in evolutionary game theory which alone is unable to solve
the cooperation problem. Similarly it has been shown that
network reciprocity by itself is not sufficient to guarantee co-
operation [20]. We propose a novel and ingenious mechanism
that uses limited altruism, exploration in strategy space and
network reciprocity in an innovative way to solve the complex
problem of cooperation in highly-connected SF networks.

By maintaining cooperation, the altruistic agents try to influ-
ence their neighbors to cooperate. We show that cooperation
thrives when at most one neighbor of each altruistic agent
reciprocate them in each iteration. To make this applicable
to real world settings, these reciprocator agents are chosen
stochastically. More specifically, we don’t require the entire
agent society to reciprocate the few altruistic agents which
could be very expensive. Instead, only some of them should
stochastically reciprocate their altruistic neighbors (should
there be one) for a short duration (current round of the PD
game) while the majority follow the imitation-based rule.
We analytically show that this limited amount of “network
reciprocity” [1] creates a cluster of cooperators in SF networks
that helps to evolve cooperation. We show this through a
comprehensive empirical study.

In summary, we hypothesize that cooperation could emerge
and be sustained in self-interested networked societies with the
help of only handful of altruistic agents, and that it does not

necessarily require the concerted effort of the entire society.
The main contributions of this paper are:

• Proposing a heterogeneous system design approach that
is composed of a large majority of self-interested agents
and a small proportion of influencer altruistic agents.

• Showing both analytically and experimentally that our
approach performs significantly better than the baseline
imitation based approaches in promoting cooperation in
highly-connected SF networks.

• Demonstrating the robustness and scalability of StIAA.
The remainder of this paper is organized as following. First,

we discuss the relevant literature in the Section II. Then
we present our proposed StIAA mechanism in Section III
followed by an extensive computational study in Section IV.
Finally, Section V presents conclusion with a summary of our
observations and discussion of future work.

II. RELATED WORKS

Two imitation based approaches has been shown to evolve
cooperation in a society of self-interested agents when the
interaction of the agents has a network structure. In [1] the
memoryless agents use the imitate-best-neighbor (IB) action
update rule while playing repeated PD game with their neigh-
bors in a two-dimensional grid. According to this deterministic
rule, each agent imitates the action of the wealthiest agent
(including itself) in the next round. It has been shown that
cooperation evolves over a wide range of payoff parameters
and the final fraction of cooperators is independent of the ini-
tial fraction. In [5], agents use the stochastic imitate-random-
neighbor (SA) action update rule to facilitate cooperation in
moderately-connected SF networks. According to this stochas-
tic imitation rule, for each agent i one neighbor j is chosen
randomly. Then if j’s payoff is larger than i’s payoff, i imitates
j’s strategy with a probability. SA increases the final fraction
of cooperators with the heterogeneity of the degrees. However,
both of these state-of-the-art imitation based approaches fail to
facilitate cooperation in highly-connected SF networks [11].

One significant approach towards solving the cooperation
problem in highly-connected SF networks used the evolution
of social network of interactions as well as the evolution of
strategies [21]. These two evolutions follow different time-
scales and it has been shown how this variation could affect
the process of cooperation evolution. However, the cost of link
rewiring is not included in the payoff calculation of the agents.

Another study presented in [2] used a single coalition
emergence approach for achieving full cooperation in a MAS.
They developed a centralized leader based coalition formula-
tion model over complex networks where the agents pay an
amount of tax to their leaders in order to join a coalition.
They have shown that their distributed information sharing
consensus mechanism effectively reduces the tax rate imposed
by the leader. However, both the leader tax collection and
information sharing require maintenance of network wide
multi-hop communication which would incur overhead cost.
Moreover, they do not investigate the variation of topological
features and its impact on their algorithm.



A network growth model based on an evolutionary pref-
erential attachment algorithm is pursued in [22]. The fitness
of each node is defined as proportional to the accrued payoff
from the PD game. New nodes are preferentially linked with
the high fitness existing nodes and play the PD game with
its neighbors accordingly. The resultant network is shown to
be heterogeneous with the SF property. This work provides
a useful understanding about how the microscopic dynamics
could lead to the coevolution of the structure and the macro-
scopic behavior of the SF network. However, the emergence
of full cooperation seems to be impossible if the payoff for the
temptation to defect is larger than the payoff for the reward.

Commitment based approaches have been used to facilitate
the emergence of cooperation [3], [4]. In [3], agents interac-
tions are captured using a non-iterated PD game. This work is
based on an unstructured population with random interactions
among the agents that use a social learning model and mutation
for strategy adaptation.

A parallel thread of research involves studies by physicists
on the issue of cooperative behavior among selfish agents
over complex networks in the framework of evolutionary
game theory. It has been shown in [23] that the growth and
preferential attachment rule of the SF network significantly
enhance the cooperative behavior. An investigation on the
effect of high clustering to enhance cooperation over the SF
network is provided in [24].

The use of influencer altruistic agents in our approach is in-
spired by some previous works [16], [17]. They addressed the
problem of forming a social convention while we address the
cooperation problem. Also these works used a small number
of inflexible “influencer-like” agents and agent interactions are
modeled using coordination games.

Although most of the works on the evolution of cooperation
underscore the importance of the SF degree-distribution in
promoting cooperation, their investigation is limited only to
the low-connectivity SF networks domain (except [21]). On
the other hand, we try to establish cooperation in SF networks
that exhibit higher connectivity. Moreover, unlike these works,
our proposed MAS is composed of heterogenous agents that
include both the self-interested and altruistic agents.

III. STOCHASTIC INFLUENCER ALTRUISTIC AGENT

(STIAA) MECHANISM

In this section we present our proposed Stochastic Influencer
Altruistic Agent (StIAA) mechanism.

A. The Interaction Model
The agent interactions in the MAS are purely local and are

constrained by an undirected SF graph G(V,E) where V is
the set of vertices (or nodes) and E ⊆ V x V is the set
of edges. Each node corresponds to an agent2. The numbers
of nodes are referred by n. Once the graph or the network is
formed by the agents it becomes fixed. Two nodes vi and vj are
neighbors if (vi, vj) ∈ E. The neighborhood N(i) is the set

2Throughout the paper, we use agent and node interchangeably.

of nodes adjacent to vi. That is, N(i) = {vj |(vi, vj)} ∈ E ⊂
V and |N(i)| is the degree of node vi. The adjacent agents
(within single-hop distance) are defined as the neighbors. The
SF graph is generated using the Barabasi-Albert model [25].

B. The Cooperation Game
The agent interactions in the MAS are purely local and are

constrained by an undirected SF graph. The agent interactions
are captured by a 2-person Prisoner’s Dilemma (PD) game.
Every agent is equipped to play this game with each one
of its neighbors and their interactions are represented by the
network links. The agents start playing the PD game after the
network is formed and we consider the final network as a
closed system.

Agent i’s payoff is denoted by u(i, j) which agent i obtains
by playing a PD game with its neighbor j. After every round of
the game, the payoff received by playing the PD game with
the neighbors gets accumulated and the accumulated payoff
is defined as

∑m
j=1 u(i, j), where j refers to the neighbors

of i. In each round of the game agents use a fixed strategy
for all of its neighbors, which is either to cooperate (C) or to
defect (D). In a 2-person PD game setting these two strategies
intersect at four possible outcomes represented by designated
payoffs: R (reward) and P (punishment) are the payoffs for
mutual cooperation and defection, respectively, whereas S
(sucker) and T (temptation) are the payoffs for cooperation
by one player and defection by the other. The payoff matrix is
represented by Table I. For the PD game, the payoffs satisfy
the condition T > R > P > S and for iterated PD’s we
require T + S < 2R.

Similar to the previous approaches, such as [5] and [1], we
assume that agents are able to access the state of the immediate
previous round from their neighbors. The state information
include accumulated payoff and the action. These information
is provided by the neighbors upon agents’ request. We also
assume that the communication channel is error-free. Since
the agent communication is limited only within their local
neighborhood, we do not consider the cost associated with
their communication.

TABLE I
PAYOFF MATRIX FOR THE PRISONER’S DILEMMA GAME

C D
C (R,R) (S,T)
D (T,S) (P,P)

Agent Types: The heterogeneous agent society is composed
of two types of agents: (i) rational self-interested agents
(SIAs) that always try to maximize their payoff and (ii)
influencer altruistic agents (IAAs) that always cooperate with
their neighbors.

C. Stochastic Influencer Altruistic Agent (StIAA) Mechanism
The large majority of the agents in our proposed MAS are

self-interested, and therefore, they try to maximize their payoff
by using the IB action update rule. According to this rule, each



agent imitates the action of the wealthiest agent (including
itself) in the next round. We introduce a small proportion of
influencer altruistic agents at random locations that always
cooperate with their neighbors. The idea of influencer agents
is inspired by the influencer fixed strategy agents in [17], [16].
These IAAs broadcast their presence in their neighborhood to
motivate the SIAs to reciprocate them. As mentioned earlier,
the rational SIAs that increase their payoff by always adopting
the action of their wealthiest neighbors may get stuck into
local maxima due to partial observability of their network.
Therefore, we enable them to determine the optimality of their
action choice (pareto-optimality) by trying the action of their
neighbor IAAs with a small exploration probability pexplore.

In the following, we provide an analytical argument on
why the proposed StIAA mechanism performs better in SF
networks.

D. Analytical Discussion on StIAA’s Performance in SF Net-
works

In SF networks, due to the degree-heterogeneity, some
agents have high-degree connectivity while the majority of
the agents have low-degree connectivity. As a consequence, the
high-degree nodes or the hubs always reap higher accumulated
payoffs as compared to their low-degree neighbors. If the
majority of the neighbors of a hub node are cooperators, then it
generates high payoff by cooperating but even higher payoff by
defecting. Let us consider two hubs which are cooperator and
defector (hC & hD) respectively. Since initially cooperators
and defectors are distributed uniformly in the network, these
hubs should have approximately equal number of cooperator
(nC) and defector (nD) neighbors, i.e., nC ≃ nD ≃ z/2,
where z is the average node degree of the hub. Therefore,
the accumulated payoffs (ACP) of the two hubs should be:
ACP (hC) = nC ∗ R + nD ∗ S ≃ z/2 ∗ (R + S) and
ACP (hD) = nC ∗ T + nD ∗ P ≃ z/2 ∗ (T + P ). Since
T + P > R + S, the fitness of the defector hubs would be
larger than that of the cooperator hubs. This is the reason why
defection prevails when solely the imitation based strategies
are pursued.

However, irrespective of the strategies adopted by the hubs,
their accumulated payoffs are always greater than their low-
degree neighbors. Let us consider a low-degree neighbor of a
hub that may act as a cooperator (kC) or a defector (kD), and
its accumulated payoff is z1/2 ∗ (R+S) (when it cooperates)
or z1/2 ∗ (T + P ) (when it defects), where z1 is the average
degree of this node. In SF networks, since the average degree
of the hubs are much larger than the that of the low-degree
nodes, i.e. z >> z1, ACP (hC) or ACP (hD) is always larger
than ACP (kC) or ACP (kD).

Previously it has been shown that when the agents follow
the IB or SA state update rule, the behavior of the high-
degree nodes or the hubs determine the asymptotic state of the
network [11]. A defecting hub can lead its imitating neighbors
towards defection. We find a remedy to this problem in a
mechanism called “network reciprocity” that is able to resist
or eliminate the invasion of the defectors [1]. According to

this mechanism, if the cooperators are able to form clusters in
which they mutually help each other, then cooperation evolves
and sustains in the network. We now discuss how our StIAA
based approach increases the likelihood of the hubs to form
clusters of cooperators and thereby facilitates cooperation.

In StIAA, the influencer altruistic agents (IAAs) persuade
their neighbors to cooperate. According to StIAA, the defector
hubs that follow the IB state update rule may at some stage
explore and reciprocate the strategy of its IAA neighbor. After
becoming cooperators hubs would incur highest accumulated
payoff as compared to their low-degree neighbors and thus
would influence them to adopt its current action of coopera-
tion. The hubs are interconnected due to the age-correlation
among the nodes in the Barabasi-Albert model of SF networks.
At one time-step of the iterative game it is possible that
multiple interconnected hubs adopt (through exploration) the
cooperative action of the IAAs in their neighborhood in the
current round and thereby could lead the entire network
towards evolving cooperation.

We use a small SF network as depicted in Figure 1 to
illustrate this phenomenon. In (a) all agents are self-interested
(SIAs) except one IAA. In the current round three SIA’s act as
defectors while one SIA cooperates. The accumulated payoff
of the hub would be the largest (2T+2P) in its neighborhood
and therefore its neighbors would adopt its defection strategy
in the next round leading the network towards a defection
state. The IAA alone is not able to resist this invasion of
the defectors. However, since the SIAs try the action of their
IAA neighbor with a small exploration probability, the hub
may adopt the cooperative action of the IAA in one time-step
as in (b). Again its accumulated payoff would be the largest
and, as a consequence, its SIA neighbors would adopt its
cooperation strategy. Thereby the entire network would evolve
into a cooperation state in (c). However, it is important to note
that if one of the neighbors of the hub (other than the IAA)
is another hub that has adopted the action of defection, the
cooperative hub may imitate its action and the network would
turn into all-defectors. To resolve this problem both the hubs
need to explore the action of the IAA in the current round.
Our simulation results indicate that this indeed happens in one
of the time-steps as the network uses many iterations to finally
converge into a majority cooperative state.

E. Algorithm for StIAA Mechanism
Algorithm 1 describes our StIAA mechanism. Initially the

strategies (Cooperate or Defect) are randomly assigned among
the agents and the IAAs are randomly selected; then agents
play the PD game with their neighbors and compute the
accumulated payoffs (Lines 1.4 - 1.13). Then (Lines 1.6 -
1.13) the SIAs try the action of their IAA neighbor with a
small probability pexplore. Otherwise the SIAs update their
strategies according to the IB action update rule. This process
repeats (Lines 1.4 - 1.15) over multiple rounds and leads
the network into a cooperation state. Since the updating of
the actions depend on the local neighborhood, we implement
synchronous update in which the entire society updates their



Fig. 1. StIAA facilitating cooperation in a SF network: (a) One influencer
altruistic agent (IAA) and four self-interested agents (SIA) of which three
SIAs, including the hub, behave as defectors; (b) based on payoff differentials,
the hub SIA might try IAA’s cooperation strategy and act as a stochastic
reciprocator agent (SRA) (c) all of the SIAs adopt the cooperation strategy of
the hub SRA by following the imitate-best-neighbor (IB) state update rule.

Algorithm 1: Stochastic Influencer Altruistic Agent
(StIAA) Mechanism
Require: Accumulated payoff is transparent only to the

neighbors
1.1 begin
1.2 randomStrategySelection()
1.3 randomIAAselection()
1.4 playPDGamewithNeighbors()
1.5 computeAccumulatedPayoff()
1.6 for each agent i:= 1 to n do
1.7 r ← randomDouble()
1.8 if r < pexplore AND neighborOfSIA(i)==IAA

then
1.9 i reciprocates the IAA

1.10 else
1.11 i follows the IB rule
1.12 end
1.13

1.14 end
1.15 end
1.16 iterate (Lines 1.4 - 1.13)

states simultaneously in discrete time-steps that gives rise to
a discrete-time macro-level dynamics.

IV. SIMULATION AND RESULTS ANALYSIS

We conduct simulations with the following goals: (i) com-
pare the performance of our proposed StIAA mechanism to
two state-of-the-art imitation based approaches, e.g., IB and
SA and then (ii) perform a comprehensive empirical study
on the performance of StIAA by varying the percentage of
the initial number of cooperators, percentage of IAAs and the
temptation payoff values.

A. Network Topology
The agents are situated on a connected topology that con-

strains the communications to the immediate neighbor set. An

edge between two nodes of the network indicates that the
agents interact and play the PD game.

The experiments are conducted on SF topologies of varying
average degrees. In addition to this, we study the performance
of StIAA in random networks (RNs) as compared to the
performance of the IB and SA action update rules over RNs.

The SF topologies are generated using the Barabasi-Albert
model. The minimum node degree is varied from 1 to 25 such
that average node degree z lies between 2 to 50.

The random networks (RNs) are generated first by adding a
random node with every node in the network. This ensures that
no node is isolated. Then we add links between two randomly
selected nodes. The number of these randomly added links is
varied to create networks with varying z in the range of 2 to
50.

B. Simulation Setup
Our network consists of 1000 agents represented as nodes

in both the SF and random networks. A majority cooperation
state (MCS) is defined as the one in which 90% or more
agents cooperate with each other [26]. In order to investigate
the scalability of StIAA, we conduct experiments on 5000
agents SF networks as well.

The IAAs maintain their cooperation strategy during the
course of the simulation. These agents not only behave altru-
istically (being always cooperative), but also try to influence
their neighborhood agents to become altruistic (cooperative).
We consider only 5% IAAs to be the approximate upper bound
(the same reported in [16]). For most of our experiments we
maintain this value. However, this number is varied within the
range of 1% to 7% to observe how it affects the performance
of StIAA. Similar to [2], the exploration probability pexplore
is set to 0.05. However, for higher connectivity networks, this
value is increased to 0.1 for getting better performance.

The following values for the PD payoff matrix are used
in the simulations: R = 1, P = 0.1 and S = 0. Hence, the
incentive to defect, T, is restricted to 1 < T < 2. For most
of our experiments we use the value 1.1 for the temptation
payoff. However, this value is varied within the range 1.1 to
1.9 to investigate its effect on the performance of StIAA.

All the results reported are averages over 100 realizations
for each network. Each simulation consists of 10,000 time-
steps where a time-step refers to a single run of Algorithm
1.

C. Simulation Results
Comparison of the Existing Imitation based Approaches
with StIAA: Figure 2(a) and 2(b) show the performance of
the IB, SA and StIAA for various average degree random
and SF networks respectively. The network size is limited to
1000 agents. For each average degree category we created 100
network instances and used the three approaches to observe
the process of evolution of cooperation. In SF networks, when
the average degree is smaller (z in the range of 4 to 5), the SA
performs better than the IB. However, as the average degree
increases, both IB and SA fail to establish MCS. A similar



pattern can be observed in random networks in which larger
average degree result in increasingly less or no cooperation.

In sparse SF and random networks (z ≈ 2), the StIAA
does not converge into MCS (as also observed in case of
IB and SA). However, for average degree between 4 to 30,
StIAA converges to MCS in almost all instances with pexplore
set to 0.05. However, when the average degree lies in the
range of 40 to 50, this low value of pexplore does not lead
to MCS. Our results indicate that by increasing this value to
0.1, the likelihood of cooperation in these highly-connected
SF networks can be significantly increased.

The performance of the StIAA in random networks is
not as good as in SF networks. The main reason for this
relatively poor performance is that RNs do not have the
benefit of skewed degree-distribution. In SF networks, because
of age-correlation among the hub nodes, StIAA facilitates
the formation of clusters of cooperators that help to evolve
cooperation. On the other hand, unlike SF networks, in random
networks the degree of the nodes are not very large nor
are they intricately connected. As a consequence, clusters of
cooperators are less likely to be formed. However, StIAA
significantly outperforms IB and SA in random networks.

D. Empirical Analysis of StIAA
In order to perform a comprehensive analysis of the per-

formance of StIAA mechanism in SF networks, we vary the
following parameters: (a) percentage of the initial number of
cooperators (%Coopp), (b) temptation payoff values (T) and
(c) percentage of the IAAs (%IAA).
Variation of % of Initial Cooperators: Table II shows the
effect of the variation of the initial percentage of cooperators
for various levels of the temptation payoff values. First,
consider the situation when the temptation payoff value is set
to 1.1 (columns 3, 6, and 9). The results indicate that when
the initial percentage of cooperator is very low (10%), even in
the most highly-connected networks (40 < z < 50) likelihood
of cooperation is high. For example, in networks with z ≈ 50,
exploration probability of 1.1 establishes cooperation in 72%
instances. With the increase in the percentage of initial coop-
erators, as in 30% and 50% cooperator networks, MCS occurs
90% and 96% times respectively. Therefore, it appears that the
variation in the percentage of initial cooperators does not affect
the cooperation evolution process very much when temptation
payoff is as low as 1.1. StIAA is able to evolve cooperation
even if the initial fraction of cooperators is very small (e.g.,
10%). Therefore, it is robust against the perturbation in the
number of cooperators and can transform a majority defector
society into a cooperative one.
Variation of Temptation Payoff: However, when the temp-
tation payoff increases beyond 1.1, even with 50% initial
cooperators the network does not evolve towards cooperation
(columns 10 and 11) in very large neighborhoods (where z is
approx. 40 ∼ 50). In other words, the performance of StIAA
is sensitive to the payoff value of temptation. We may need to
increase both the IAAs and exploration probability to facilitate
cooperation where benefit of temptation is high.
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Fig. 2. Plot of average degree (z) vs. number of times each mechanism
successfully converges into a majority cooperation state (#MCS) over 100
simulations; temptation payoff=1.1, initial cooperators=50%, IAA=5%.



TABLE II
EFFECT OF THE VARIATION OF VARIOUS PARAMETERS IN 1000 AGENTS SF NETWORKS. FOR EACH VARIATION, THE TABLE SHOWS THE NUMBER OF

TIMES THE NETWORK SUCCESSFULLY CONVERGES INTO A MAJORITY COOPERATION STATE (#MCS) AMONG 100 SIMULATIONS. THE AVERAGE DEGREE
IS ROUNDED TO THE NEAREST INTEGER VALUE.

Variation of % of Cooperators & Temptation Payoff (T) (%IAA = 5)
%Coop=10 %Coop=30 %Coop=50

T=1.1 T=1.5 T=1.9 T=1.1 T=1.5 T=1.9 T=1.1 T=1.5 T=1.9
z pexplore #MCS #MCS #MCS #MCS #MCS #MCS #MCS #MCS #MCS
2 0.05 0 0 0 0 0 0 0 0 0
4 0.05 100 27 0 100 27 1 100 28 100

10 0.05 100 100 100 100 100 100 100 100 100
20 0.05 100 100 100 100 100 100 100 100 100
30 0.05 99 62 6 100 73 14 100 78 12
40 0.05 20 0 0 56 1 0 68 5 0

0.1 100 54 1 100 68 3 100 67 3
50 0.05 0 0 0 7 0 0 27 0 0

0.1 72 0 0 90 1 0 96 0 0

Variation of % of IAAs
(%Coop=50, T=1.1)

%IAA=1 %IAA=3 %IAA=7
z pexplore #MCS #MCS #MCS
2 0.05 0 0 0
4 0.05 99 100 100

10 0.05 97 100 100
20 0.05 68 100 100
30 0.05 29 89 100
40 0.05 19 29 92

0.1 32 99 100
50 0.05 11 24 26

0.1 21 52 100

Variation of % of IAAs: Columns 12-14 of Table II shows
the effect of various percentage of IAAs for a fixed 50%
initial cooperators and 1.1 temptation payoff value. It can
be seen that for smaller density of IAA (1% to 3%) StIAA
does not always converge into MCS beyond medium average
connectivity networks (where z > 20). In case of 1% IAA the
convergence scenario is not satisfactory when the average de-
gree increases. Even with relatively large value of pexplore (=
0.1), performance does not improve much. The improvement is
not significant in case of 3% IAA. On the other hand, although
7% IAA provides better result, its difference with 5% IAA is
not significant (columns 9 and 14). In other words, 5% IAA
is a reasonably small number to maintain good performance.
Therefore, we use this percentage as the upper bound for the
IAAs.

Scalability of StIAA: In order to study the scalability of
StIAA, we investigate its performance on 5000 agents SF
networks with varying degrees within the range 2 to 60.
Figure 2(c) shows that the performance of StIAA is even better
than 1000 agents SF networks. For example, when the average

neighborhood size becomes larger (such as when z is between
40 to 50), more than 80% times MCS occurs. We further
increase the neighborhood size (z ≈ 60), and observe that
more than 70% instances StIAA converges into MCS. With
an increased exploration rate (pexplore = 0.1), convergence
rate is 100% even in very high average degree networks.

The Challenge of Sparse Networks: Figure 2 and Table II
show the challenge of establishing cooperation in sparse net-
works (where z ≈ 2). Neither IB and SA, nor StIAA perform
well in these networks. Due to low-connectivity, many agents
in these networks has only one neighbor. As a consequence,
most of the time stochastic reciprocation approach fails to find
neighbors that would reciprocate the IAAs. This makes the
resistance of the defectors difficult and results in degraded
performance of StIAA.

V. CONCLUSIONS AND FUTURE WORK

It this paper, we have presented a stochastic influencer
altruistic agent (StIAA) mechanism that is able to establish
cooperation in MAS operating on highly-connected RN and



SF networks. We introduced a small proportion of influencer
altruistic agents (IAAs) in the self-interested society. The
IAAs, irrespective of their payoff, always cooperate with
their neighbors while the self-interested agents (SIAs) try to
maximize their payoff by imitating the wealthiest agent in their
neighborhood. In order to check the optimality of their actions,
the SIAs try the cooperative action of their IAAs (should
there be one) with a small exploration probability. We have
conducted a comprehensive simulation on the performance of
StIAA. Our main findings are as follows:

• StIAA performs significantly better in highly-connected
RN and SF networks than the existing state-of-the-art IB
and SA action update rules.

• We determine realistic upper bounds for the percentage
of the IAAs (only 5%) to ensure cooperation.

• StIAA is robust as it is able to evolve cooperation in
societies that initially has very small fraction of cooper-
ators.

• At higher temptation payoff level, the network cannot
resist defectors. We may need to increase both the IAAs
and the exploration probability.

• StIAA is scalable in that increasing the size of the
network does not degrade its performance.

We believe our IAA based approach would be appropriate
for highly-connected OSNs where “privacy buddies” [13],
[14] playing the role of influencer agents could establish and
enhance cooperation.

In addition to this, we identify the problem of establishing
cooperation in sparse networks (where average degree ≈
2). As future work, we intend to address the cooperation
problem in other network types ranging from sparse to large
neighborhoods.
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